cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A105070 T(n,k) = 2^k*binomial(n,2k+1), where 0 <= k <= floor((n-1)/2), n >= 1.

Original entry on oeis.org

1, 2, 3, 2, 4, 8, 5, 20, 4, 6, 40, 24, 7, 70, 84, 8, 8, 112, 224, 64, 9, 168, 504, 288, 16, 10, 240, 1008, 960, 160, 11, 330, 1848, 2640, 880, 32, 12, 440, 3168, 6336, 3520, 384, 13, 572, 5148, 13728, 11440, 2496, 64, 14, 728, 8008, 27456, 32032, 11648, 896, 15, 910, 12012, 51480, 80080, 43680, 6720, 128
Offset: 1

Views

Author

Emeric Deutsch, Apr 05 2005

Keywords

Comments

Row n contains ceiling(n/2) terms. Row sums yield the Pell numbers (A000129). Column 1 yields A007290.
Eigenvector equals A118397, so that A118397(n) = Sum_{k=0..[n/2]} T(n+1,k)*A118397(k) for n >= 0. - Paul D. Hanna, May 08 2006
Essentially a triangle, read by rows, given by (2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 12 2011
Subtriangle of the triangle given by (1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Apr 07 2012

Examples

			Triangle begins:
  1;
  2;
  3,  2;
  4,  8;
  5, 20,  4;
  6, 40, 24;
(2, -1/2, 1/2, 0, 0, ...) DELTA (0, 1, -1, 0, 0, ...) begins:
  1;
  2,  0;
  3,  2,  0;
  4,  8,  0,  0;
  5, 20,  4,  0,  0;
  6, 40, 24,  0,  0,  0.
(1, 1, -1, 1, 0, 0, ...) DELTA (0, 0, 2, -2, 0, 0, ...) begins:
  1;
  1,  0;
  2,  0,  0;
  3,  2,  0,  0;
  4,  8,  0,  0,  0;
  5, 20,  4,  0,  0,  0;
  6, 40, 24,  0,  0,  0,  0. - _Philippe Deléham_, Apr 07 2012
		

Crossrefs

Cf. A118397 (eigenvector).

Programs

  • Magma
    [2^k*Binomial(n,2*k+1): k in [0..Floor((n-1)/2)], n in [1..15]]; // G. C. Greubel, Mar 15 2020
    
  • Maple
    T:=(n,k)->binomial(n,2*k+1)*2^k:for n from 1 to 15 do seq(T(n,k),k=0..floor((n-1)/2)) od; # yields sequence in triangular form
  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]
    v[n_, x_] := u[n - 1, x] + v[n - 1, x]
    Table[Factor[u[n, x]], {n, 1, z}]
    Table[Factor[v[n, x]], {n, 1, z}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A207536 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A105070 *)
    (* Clark Kimberling, Feb 18 2010 *)
    Table[2^k*Binomial[n, 2*k+1], {n, 15}, {k,0,Floor[(n-1)/2]}]//Flatten (* G. C. Greubel, Mar 15 2020 *)
  • Sage
    [[2^k*binomial(n,2*k+1) for k in (0..floor((n-1)/2))] for n in (1..15)] # G. C. Greubel, Mar 15 2020

Formula

E.g.f.: exp(x)*sinh(x*sqrt(2*y))/sqrt(2*y), cf. A034867. - Vladeta Jovovic, Apr 06 2005
From Philippe Deléham, Apr 07 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
G.f.: (1-x+x^2-y*x^2)/(1-2*x+x^2-2*y*x^2).
T(n,k) = 2*T(n-1,k) - T(n-2,k) + 2*T(n-2,k-1), T(0,0) = T(1,0) = 1, T(1,1) = T(2,1) = T(2,2) = 0, T(2,0) = 2 and T(n,k) = 0 if k<0 or if k>n. (End)
Sum_{k=0..floor((n-1)/2)} T(n,k) = { P(n) (A000129(n)), A215928(n), (-1)^(n-1) *A077985(n-1), -A176981(n+1), (-1)^(n-1)*A215936(n+2) }, for n >= 1. - G. C. Greubel, Mar 15 2020

A270863 Self-composition of the Fibonacci sequence.

Original entry on oeis.org

0, 1, 2, 6, 17, 50, 147, 434, 1282, 3789, 11200, 33109, 97878, 289354, 855413, 2528850, 7476023, 22101326, 65338038, 193158521, 571033600, 1688143881, 4990651642, 14753839486, 43616704857, 128943855250, 381196100507, 1126928202714, 3331532438042, 9848993360069
Offset: 0

Views

Author

Oboifeng Dira, Mar 24 2016

Keywords

Comments

This sequence has the same relation to the Fibonacci numbers A000045 as A030267 has to the natural numbers A000027.
From Oboifeng Dira, Jun 28 2020: (Start)
This sequence can be generated from a family of composition pairs of generating functions g(f(x)), where k is an integer and where
f(x) = x/(1-k*x-x^2) and g(x) = (x+(k-1)*x^2)/(1-(3-2*k)*x-(3*k-k^2-1)*x^2).
Some cases of k values are:
k=-5, f(x) g.f. 0,A052918(-1)^n and g(x) g.f. 0,A081571
k=-4, f(x) g.f. A001076(-1)^(n+1) and g(x) g.f. 0,A081570
k=-3, f(x) g.f. A006190(-1)^(n+1) and g(x) g.f. 0,A081569
k=-2, f(x) g.f. A215936(n+2) and g(x) g.f. 0,A081568
k=-1, f(x) g.f. A039834(n+2) and g(x) g.f. 0,A081567
k=0, f(x) g.f. A000035 and g(x) g.f. 0,A001519(n+1)
k=1, f(x) g.f. A000045 and g(x) g.f. A000045
k=2, f(x) g.f. A000129 and g(x) g.f. 0,A039834(n+1)
k=3, f(x) g.f. A006190 and g(x) g.f. 0,A001519(-1)^n
k=4, f(x) g.f. A001076 and g(x) g.f. 0,A093129(-1)^n
k=5, f(x) g.f. 0,A052918 and g(x) g.f. 0,A192240(-1)^n
k=6, f(x) g.f. A005668 and g(x)=(x+5*x^2)/(1+9*x+19*x^2)
k=7, f(x) g.f. 0,A054413 and g(x)=(x+6*x^2)/(1+11*x+29*x^2).
(End)

Examples

			a(5) = 3*a(4)+a(3)-3*a(2)-a(1) = 51+6-6-1 = 50.
		

Crossrefs

Programs

  • Magma
    I:=[0, 1, 2, 6]; [m le 4 select I[m] else 3*Self(m-1)+Self(m-2)-3*Self(m-3)-Self(m-4): m in [1..30]]; // Marius A. Burtea, Aug 03 2019
  • Maple
    f:= x-> x/(1-x-x^2):
    a:= n-> coeff(series(f(f(x)), x, n+1), x, n):
    seq(a(n), n=0..30);
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,-3,1,3]^(n-1)*[1;2;6;17])[1,1] \\ Charles R Greathouse IV, Mar 24 2016
    
  • PARI
    concat(0, Vec(x*(1-x-x^2)/(1-3*x-x^2+3*x^3+x^4) + O(x^40))) \\ Colin Barker, Mar 24 2016
    

Formula

a(n) = 3*a(n-1)+a(n-2)-3*a(n-3)-a(n-4) for n > 3, a(0)=0, a(1)=1, a(2)=2, a(3)=6.
G.f.: x*(1-x-x^2) / (1-3*x-x^2+3*x^3+x^4). - Colin Barker, Mar 24 2016
G.f.: B(B(x)) where B(x) is the g.f. of A000045. - Joerg Arndt, Mar 25 2016
a(n) = (phi*((phi^2 + 5^(1/4)*sqrt(3*phi))^n - (phi^2 - 5^(1/4)*sqrt(3*phi))^n) + (psi^2 + 5^(1/4)*sqrt(3*psi))^n - (psi^2 - 5^(1/4)*sqrt(3*psi))^n)/(2^n * 5^(3/4) * sqrt(3*phi)), where phi = (sqrt(5) + 1)/2 is the golden ratio, and psi = 1/phi = (sqrt(5) - 1)/2. - Vladimir Reshetnikov, Aug 01 2019
0 = a(n)*(a(n) +6*a(n+1) -a(n+2)) +a(n+1)*(8*a(n+1) -9*a(n+2) +a(n+3)) +a(n+2)*(-8*a(n+2) +6*a(n+3)) +a(n+3)*(-a(n+3)) if n>=0. - Michael Somos, Feb 05 2022

A147746 Riordan array (1, x(1-2x)/(1-3x+x^2)).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 5, 3, 1, 0, 13, 14, 9, 4, 1, 0, 34, 40, 28, 14, 5, 1, 0, 89, 114, 87, 48, 20, 6, 1, 0, 233, 323, 267, 161, 75, 27, 7, 1, 0, 610, 910, 809, 528, 270, 110, 35, 8, 1
Offset: 0

Views

Author

Paul Barry, Nov 11 2008

Keywords

Comments

Triangle [0,1,1,1,0,0,0,....] DELTA [1,0,0,0,...] with Deléham DELTA as in A084938.
Note that 1/(1-x/(1-x/(1-x))) = (1-2x)/(1-3x+x^2). Row sums are A124302.

Examples

			Triangle begins
  1;
  0,   1;
  0,   1,   1;
  0,   2,   2,   1;
  0,   5,   5,   3,   1;
  0,  13,  14,   9,   4,   1;
  0,  34,  40,  28,  14,   5,   1;
  0,  89, 114,  87,  48,  20,   6,   1;
  ...
		

Programs

  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    RiordanArray[1&, # (1-2#)/(1-3#+#^2)&, 10] // Flatten (* Jean-François Alcover, Jul 19 2019 *)

Formula

Sum_{k=0..n} T(n,k)*2^k = A147748(n). - Philippe Deléham, Oct 30 2011
Sum_{k=0..n} T(n,k)*(-1)^(n-k) = A215936(n). - Philippe Deléham, Aug 30 2012
G.f.: (1 - 3*x + x^2)/(1 - 3*x + x^2 - x*y + 2*x^2*y). - R. J. Mathar, Aug 11 2015

A188285 Riordan matrix ( (1-2x)/(1-2x-x^2), (x-2x^2)/(1-2x-x^2) ).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 5, 4, 3, 0, 1, 12, 11, 6, 4, 0, 1, 29, 28, 18, 8, 5, 0, 1, 70, 72, 48, 26, 10, 6, 0, 1, 169, 184, 130, 72, 35, 12, 7, 0, 1, 408, 469, 348, 204, 100, 45, 14, 8, 0, 1, 985, 1192, 927, 568, 295, 132, 56, 16, 9, 0, 1, 2378, 3022, 2456, 1571, 850, 404, 168, 68, 18, 10, 0, 1, 5741, 7644, 6477, 4312, 2430, 1200, 532, 208, 81, 20, 11, 0, 1
Offset: 0

Views

Author

Emanuele Munarini, Mar 26 2011

Keywords

Comments

T(n,k) is the number of Dyck paths of height at most 3 with length 2n and k hills.
Row sum = F_(2n-1) Fibonacci number.
T is the convolution triangle of |A215936|. - Peter Luschny, Oct 19 2022

Examples

			Triangle begins:
1
0, 1
1, 0, 1
2, 2, 0, 1
5, 4, 3, 0, 1
12, 11, 6, 4, 0, 1
29, 28, 18, 8, 5, 0, 1
70, 72, 48, 26, 10, 6, 0, 1
169, 184, 130, 72, 35, 12, 7, 0, 1
408, 469, 348, 204, 100, 45, 14, 8, 0, 1
		

Programs

  • Maple
    # Uses function PMatrix from A357368. Adds column 1,0,0,0,... to the left.
    PMatrix(10, n -> (-1)^(n+1)*A215936(n)); # Peter Luschny, Oct 19 2022
  • Mathematica
    Flatten[Table[Sum[Pochhammer[i,n-k-2i]/(n-k-2i)!Binomial[i+k,k]2^(n-k-2i),{i,0,(n-k)/2}],{n,0,12},{k,0,n}],1]
  • Maxima
    create_list(sum(pochhammer(i,n-k-2*i)/(n-k-2*i)!*binomial(i+k,k)*2^(n-k-2*i),i,0,(n-k)/2),n,0,12,k,0,n);

Formula

T(n,k) = sum(M(i,n-k-2i)*Binomial(i+k,k)*2^{n-k-2i},i=0..floor((n-k)/2)), where M(n,k)=n(n+1)(n+2)...(n+k-1)/k!.
Recurrence: T(n+2,k+1) = 2 T(n+1,k+1) + T(n+1,k) + T(n,k+1) - 2 T(n,k)
Showing 1-4 of 4 results.