A375025
Triangle read by rows: Matrix inverse of row-reversed A374439.
Original entry on oeis.org
1, -2, 1, 3, -2, 1, -4, 2, -2, 1, 6, -2, 1, -2, 1, -10, 5, 0, 0, -2, 1, 15, -10, 5, 2, -1, -2, 1, -20, 10, -12, 6, 4, -2, -2, 1, 30, -8, 4, -16, 8, 6, -3, -2, 1, -52, 26, 8, -4, -22, 11, 8, -4, -2, 1, 78, -60, 30, 30, -15, -30, 15, 10, -5, -2, 1
Offset: 0
Triangle starts:
[0] [ 1]
[1] [ -2, 1]
[2] [ 3, -2, 1]
[3] [ -4, 2, -2, 1]
[4] [ 6, -2, 1, -2, 1]
[5] [-10, 5, 0, 0, -2, 1]
[6] [ 15, -10, 5, 2, -1, -2, 1]
[7] [-20, 10, -12, 6, 4, -2, -2, 1]
[8] [ 30, -8, 4, -16, 8, 6, -3, -2, 1]
[9] [-52, 26, 8, -4, -22, 11, 8, -4, -2, 1]
-
A := (n,k) -> ifelse(k::odd,2,1)*binomial(n-irem(k,2)-iquo(k,2),iquo(k,2)):
ARevRow := n -> local k; [seq(A(n, n-k), k = 0..n)]:
M := m -> Matrix(m, (n, k) -> ifelse(k > n, 0, ARevRow(n-1)[k])):
T := n -> LinearAlgebra:-MatrixInverse(M(n)): T(11);
-
from functools import cache
@cache
def Trow(n):
if n == 0: return [1]
if n == 1: return [-2, 1]
fli = Trow(n - 1)
row = [1] * (n + 1)
row[n - 1] = -2
for k in range(n - 2, 0, -1):
row[k] = fli[k - 1] - fli[k + 1]
row[0] = -2 * fli[0] - fli[1]
return row
# Peter Luschny, Aug 18 2024
A001077
Numerators of continued fraction convergents to sqrt(5).
Original entry on oeis.org
1, 2, 9, 38, 161, 682, 2889, 12238, 51841, 219602, 930249, 3940598, 16692641, 70711162, 299537289, 1268860318, 5374978561, 22768774562, 96450076809, 408569081798, 1730726404001, 7331474697802, 31056625195209
Offset: 0
1 2 9 38 161 (A001077)
-, -, -, --, ---, ...
0 1 4 17 72 (A001076)
1 + 2*x + 9*x^2 + 38*x^3 + 161*x^4 + 682*x^5 + 2889*x^6 + 12238*x^7 + ... - _Michael Somos_, Aug 11 2009
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- V. Thébault, Les Récréations Mathématiques, Gauthier-Villars, Paris, 1952, p. 282.
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..200 from T. D. Noe)
- E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242, Ex. 1, pp. 237-238.
- Tanya Khovanova, Recursive Sequences
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (4,1).
Cf.
A000032,
A001076,
A023039,
A049629,
A052924,
A078343,
A164581,
A179237,
A180148,
A329723,
A374439.
-
I:=[1, 2]; [n le 2 select I[n] else 4*Self(n-1) + Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 19 2017
-
A001077:=(-1+2*z)/(-1+4*z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation
with(combinat): a:=n->fibonacci(n+1, 4)-2*fibonacci(n, 4): seq(a(n), n=0..30); # Zerinvary Lajos, Apr 04 2008
-
LinearRecurrence[{4, 1}, {1, 2}, 30]
Join[{1},Numerator[Convergents[Sqrt[5],30]]] (* Harvey P. Dale, Mar 23 2016 *)
CoefficientList[Series[(1-2*x)/(1-4*x-x^2), {x, 0, 30}], x] (* G. C. Greubel, Dec 19 2017 *)
LucasL[3*Range[0,30]]/2 (* Rigoberto Florez, Apr 03 2019 *)
a[ n_] := LucasL[n, 4]/2; (* Michael Somos, Nov 02 2021 *)
-
{a(n) = fibonacci(3*n) / 2 + fibonacci(3*n - 1)}; /* Michael Somos, Aug 11 2009 */
-
a(n)=if(n<2,n+1,my(t=4);for(i=1,n-2,t=4+1/t);numerator(2+1/t)) \\ Charles R Greathouse IV, Dec 05 2011
-
x='x+O('x^30); Vec((1-2*x)/(1-4*x-x^2)) \\ G. C. Greubel, Dec 19 2017
-
[lucas_number2(n,4,-1)/2 for n in range(0, 30)] # Zerinvary Lajos, May 14 2009
A003688
a(n) = 3*a(n-1) + a(n-2), with a(1)=1 and a(2)=4.
Original entry on oeis.org
1, 4, 13, 43, 142, 469, 1549, 5116, 16897, 55807, 184318, 608761, 2010601, 6640564, 21932293, 72437443, 239244622, 790171309, 2609758549, 8619446956, 28468099417, 94023745207, 310539335038, 1025641750321, 3387464586001, 11188035508324, 36951571110973
Offset: 1
G.f. = x + 4*x^2 + 13*x^3 + 43*x^4 + 142*x^5 + 469*x^6 + 1549*x^7 + 5116*x^8 + ...
- F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Joerg Arndt, Matters Computational (The Fxtbook)
- Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
- C. Bautista-Ramos and C. Guillen-Galvan, Fibonacci numbers of generalized Zykov sums, J. Integer Seq., 15 (2012), Article 12.7.8.
- F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
- F. Faase, Counting Hamiltonian cycles in product graphs
- F. Faase, Results from the counting program
- Sergio Falcón and Ángel Plaza, On the Fibonacci k-numbers, Chaos, Solitons & Fractals 2007; 32(5): 1615-24.
- Taras Goy and Mark Shattuck, Determinants of Toeplitz-Hessenberg Matrices with Generalized Leonardo Number Entries, Ann. Math. Silesianae (2023). See p. 15.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 419
- Milan Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (3,1).
-
[n le 2 select 4^(n-1) else 3*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 19 2011
-
with(combinat): a:=n->fibonacci(n,3)-2*fibonacci(n-1,3): seq(a(n), n=2..25); # Zerinvary Lajos, Apr 04 2008
-
a[n_] := (MatrixPower[{{1, 3}, {1, 2}}, n].{{1}, {1}})[[1, 1]]; Table[ a[n], {n, 0, 23}] (* Robert G. Wilson v, Jan 13 2005 *)
LinearRecurrence[{3,1},{1,4},30] (* Harvey P. Dale, Mar 15 2015 *)
-
a(n)=([0,1; 1,3]^(n-1)*[1;4])[1,1] \\ Charles R Greathouse IV, Aug 14 2017
-
@CachedFunction
def a(n): # a = A003688
if (n<3): return 4^(n-1)
else: return 3*a(n-1) + a(n-2)
[a(n) for n in range(1,41)] # G. C. Greubel, Dec 26 2023
A048875
Generalized Pellian with second term of 6.
Original entry on oeis.org
1, 6, 25, 106, 449, 1902, 8057, 34130, 144577, 612438, 2594329, 10989754, 46553345, 197203134, 835365881, 3538666658, 14990032513, 63498796710, 268985219353, 1139439674122, 4826743915841, 20446415337486, 86612405265785, 366896036400626, 1554196550868289
Offset: 0
G.f. = 1 + 6*x + 25*x^2 + 106*x^3 + 449*x^4 + 1902*x^5 + 8057*x^6 + 34130*x^7 + ...
- T. D. Noe, Table of n, a(n) for n = 0..200
- M. Bicknell, A Primer on the Pell Sequence and related sequences, Fibonacci Quarterly, Vol. 13, No. 4, 1975, pp. 345-349.
- L. Carlitz, R. Scoville and V. E. Hoggatt, Jr., Pellian Representations, Fib. Quart. Vol. 10, No. 5, (1972), pp. 449-488.
- Tanya Khovanova, Recursive Sequences
- A. K. Whitford, Binet's Formula Generalized, Fibonacci Quarterly, Vol. 15, No. 1, 1979, pp. 21, 24, 29.
- Index entries for linear recurrences with constant coefficients, signature (4,1).
-
with(combinat): a:=n->2*fibonacci(n-1,4)+fibonacci(n,4): seq(a(n), n=1..17); # Zerinvary Lajos, Apr 04 2008
-
LinearRecurrence[{4,1},{1,6},40] (* Harvey P. Dale, Nov 30 2011 *)
a[ n_] := (4 I ChebyshevT[ n + 1, -2 I] - 3 ChebyshevT[ n, -2 I]) I^n / 5; (* Michael Somos, Feb 23 2014 *)
a[ n_] := If[ n < 0, SeriesCoefficient[ (1 + 6 x) / (1 + 4 x - x^2), {x, 0, -n}], SeriesCoefficient[ (1 + 2 x) / (1 - 4 x - x^2), {x, 0, n}]]; (* Michael Somos, Feb 23 2014 *)
-
a[0]:1$ a[1]:6$ a[n]:=4*a[n-1]+a[n-2]$ makelist(a[n], n, 0, 30); /* Martin Ettl, Nov 03 2012 */
-
{a(n) = ( 4*I*polchebyshev( n+1, 1, -2*I) - 3*polchebyshev( n, 1, -2*I)) * I^n / 5}; /* Michael Somos, Feb 23 2014 */
-
{a(n) = if( n<0, polcoeff( (1 + 6*x) / (1 + 4*x - x^2) + x * O(x^-n), -n), polcoeff( (1 + 2*x) / (1 - 4*x - x^2) + x * O(x^n), n))}; \\ Michael Somos, Feb 23 2014
A108300
a(n+2) = 3*a(n+1) + a(n), with a(0) = 1, a(1) = 5.
Original entry on oeis.org
1, 5, 16, 53, 175, 578, 1909, 6305, 20824, 68777, 227155, 750242, 2477881, 8183885, 27029536, 89272493, 294847015, 973813538, 3216287629, 10622676425, 35084316904, 115875627137, 382711198315, 1264009222082, 4174738864561, 13788225815765, 45539416311856
Offset: 0
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- Sergio Falcon, The k-Fibonacci difference sequences, Chaos, Solitons & Fractals, Volume 87, June 2016, Pages 153-157.
- Tanya Khovanova, Recursive Sequences
- Vincent Vatter, Growth rates of permutation classes: from countable to uncountable, arXiv:1605.04297 [math.CO], 2016. (Mentions a signed version.)
- Index entries for linear recurrences with constant coefficients, signature (3,1).
-
seriestolist(series((-2*x-1)/(x^2-1+3*x), x=0,25));
-
LinearRecurrence[{3,1},{1,5},40] (* Harvey P. Dale, Jul 04 2013 *)
-
Vec((1 + 2*x)/(1 - 3*x - x^2) + O(x^30)) \\ Andrew Howroyd, Jun 05 2021
A124038
Triangle read by rows: T(n, k) = T(n-1, k-1) - T(n-2, k), with T(n, n) = 1, T(n, n-1) = -2.
Original entry on oeis.org
1, -2, 1, -1, -2, 1, 2, -2, -2, 1, 1, 4, -3, -2, 1, -2, 3, 6, -4, -2, 1, -1, -6, 6, 8, -5, -2, 1, 2, -4, -12, 10, 10, -6, -2, 1, 1, 8, -10, -20, 15, 12, -7, -2, 1, -2, 5, 20, -20, -30, 21, 14, -8, -2, 1, -1, -10, 15, 40, -35, -42, 28, 16, -9, -2, 1
Offset: 0
Triangular sequence begins as:
1;
-2, 1;
-1, -2, 1;
2, -2, -2, 1;
1, 4, -3, -2, 1;
-2, 3, 6, -4, -2, 1;
-1, -6, 6, 8, -5, -2, 1;
2, -4, -12, 10, 10, -6, -2, 1;
1, 8, -10, -20, 15, 12, -7, -2, 1;
-2, 5, 20, -20, -30, 21, 14, -8, -2, 1;
-1, -10, 15, 40, -35, -42, 28, 16, -9, -2, 1;
-
function T(n,k) // T = A124038
if k lt 0 or k gt n then return 0;
elif k ge n-2 then return k-n + (-1)^(n+k);
else return T(n-1,k-1) - T(n-2,k);
end if;
end function;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 22 2025
-
(* First program *)
t[n_, m_, d_]:= If[n==m && n>1 && m>1, x, If[n==m-1 || n==m+1, -1, If[n==m== 1, x-2, 0]]];
M[d_]:= Table[t[n,m,d], {n,d}, {m,d}];
Join[{{1}}, Table[CoefficientList[Table[Det[M[d]], {d,10}][[d]], x], {d,10}]]//Flatten
(* Second program *)
T[n_, k_]:= T[n, k] = If[k<0 || k>n, 0, If[k>n-2, k-n+(-1)^(n-k), T[n-1, k- 1] -T[n-2,k]]];
Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 22 2025 *)
-
@CachedFunction
def A124038(n,k):
if n< 0: return 0
if n==0: return 1 if k == 0 else 0
h = 2*A124038(n-1,k) if n==1 else 0
return A124038(n-1,k-1) - A124038(n-2,k) - h
for n in (0..9): [A124038(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012
-
from sage.combinat.q_analogues import q_stirling_number2
def A124038(n,k): return (1 + ((n-k)%2))*q_stirling_number2(n+1, n-k+1, -1)
print(flatten([[A124038(n, k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 22 2025
A374438
Triangle read by rows: T(n, k) = T(n - 1, k) + T(n - 2, k - 2), with initial values T(n, k) = k + 1 for k < 3.
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 1, 2, 3, 2, 1, 2, 3, 4, 3, 1, 2, 3, 6, 6, 2, 1, 2, 3, 8, 9, 6, 3, 1, 2, 3, 10, 12, 12, 9, 2, 1, 2, 3, 12, 15, 20, 18, 8, 3, 1, 2, 3, 14, 18, 30, 30, 20, 12, 2, 1, 2, 3, 16, 21, 42, 45, 40, 30, 10, 3, 1, 2, 3, 18, 24, 56, 63, 70, 60, 30, 15, 2
Offset: 0
Triangle starts:
[ 0] [1]
[ 1] [1, 2]
[ 2] [1, 2, 3]
[ 3] [1, 2, 3, 2]
[ 4] [1, 2, 3, 4, 3]
[ 5] [1, 2, 3, 6, 6, 2]
[ 6] [1, 2, 3, 8, 9, 6, 3]
[ 7] [1, 2, 3, 10, 12, 12, 9, 2]
[ 8] [1, 2, 3, 12, 15, 20, 18, 8, 3]
[ 9] [1, 2, 3, 14, 18, 30, 30, 20, 12, 2]
[10] [1, 2, 3, 16, 21, 42, 45, 40, 30, 10, 3]
Family of triangles:
A162515 (m=1, Fibonacci),
A374439 (m=2, Lucas), this triangle (m=3).
Row sums:
A187890 (apart from initial terms), also
A001060 + 1 (with 1 prepended).
-
M := 3; # family index
T := proc(n, k) option remember; if k > n then 0 elif k < M then k + 1 else
T(n - 1, k) + T(n - 2, k - 2) fi end:
seq(seq(T(n, k), k = 0..n), n = 0..11);
-
from functools import cache
@cache
def T(n: int, k: int) -> int:
if k > n: return 0
if k < 3: return k + 1
return T(n - 1, k) + T(n - 2, k - 2)
A374429
Triangle read by rows: T(n, k) = ((3*(-1)^k + 1)/2)*abs(qStirling2(n, k, -1)). Polynomials related to the Lucas and Fibonacci numbers.
Original entry on oeis.org
2, 0, -1, 0, -1, 2, 0, -1, 2, -1, 0, -1, 2, -2, 2, 0, -1, 2, -3, 4, -1, 0, -1, 2, -4, 6, -3, 2, 0, -1, 2, -5, 8, -6, 6, -1, 0, -1, 2, -6, 10, -10, 12, -4, 2, 0, -1, 2, -7, 12, -15, 20, -10, 8, -1, 0, -1, 2, -8, 14, -21, 30, -20, 20, -5, 2
Offset: 0
Triangle starts:
[0] [2]
[1] [0, -1]
[2] [0, -1, 2]
[3] [0, -1, 2, -1]
[4] [0, -1, 2, -2, 2]
[5] [0, -1, 2, -3, 4, -1]
[6] [0, -1, 2, -4, 6, -3, 2]
[7] [0, -1, 2, -5, 8, -6, 6, -1]
[8] [0, -1, 2, -6, 10, -10, 12, -4, 2]
[9] [0, -1, 2, -7, 12, -15, 20, -10, 8, -1]
.
Table of interpolated sequences:
| | A039834 & A000045 | A000032 | A000129 | A048654 |
| n | P(n, 1) | P(n,-1) |-2^nP(n,1/2)|2^nP(n,-1/2)|
| | Fibonacci | Lucas | Pell | Pell* |
| 1 | -1 | 1 | 1 | 1 |
| 2 | 1 | 3 | 0 | 4 |
| 3 | 0 | 4 | 1 | 9 |
| 4 | 1 | 7 | 2 | 22 |
| 5 | 1 | 11 | 5 | 53 |
| 6 | 2 | 18 | 12 | 128 |
| 7 | 3 | 29 | 29 | 309 |
| 8 | 5 | 47 | 70 | 746 |
| 9 | 8 | 76 | 169 | 1801 |
| 10 | 13 | 123 | 408 | 4348 |
-
from sage.combinat.q_analogues import q_stirling_number2
def T(n, k):
return ((3*(-1)^k + 1)//2)*abs(q_stirling_number2(n, k, -1))
for n in range(10): print([T(n, k) for k in range(n + 1)])
def P(n, x):
if n < 0: return P(-n, -x)
return sum(T(n, k)*x^k for k in range(n + 1))
# Lucas and Fibonacci combined
print([P(n, 1) for n in range(-6, 9)])
# Table of interpolated sequences
print("| | A039834 & A000045 | A000032 | A000129 | A048654 |")
print("| n | P(n, 1) | P(n,-1) |-2^nP(n,1/2)|2^nP(n,-1/2)|")
f = "| {0:2d} | {1:9d} | {2:4d} | {3:7d} | {4:7d} |"
for n in range(1, 11): print(f.format(n, P(n, 1), P(n, -1),
int(-2**n*P(n, 1/2)), int(2**n*P(n, -1/2))))
Showing 1-8 of 8 results.
Comments