A003945
Expansion of g.f. (1+x)/(1-2*x).
Original entry on oeis.org
1, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472, 6442450944, 12884901888
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Yasemin Alp and E. Gokcen Kocer, Exponential Almost-Riordan Arrays, Results Math. (2024) Vol. 79, 173.
- F. Faase, Counting Hamiltonian cycles in product graphs
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 151
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 304
- Markus Kuba and Alois Panholzer, Enumeration formulas for pattern restricted Stirling permutations, Discrete Math. 312 (2012), no. 21, 3179--3194. MR2957938. - From _N. J. A. Sloane_, Sep 25 2012
- C. Richard and U. Grimm, On the entropy and letter frequencies of ternary squarefree words, arXiv:math/0302302 [math.CO], 2003.
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (2).
- Index entries for sequences related to trees
Generating functions of the form (1+x)/(1-k*x) for k=13 to 30:
A170732,
A170733,
A170734,
A170735,
A170736,
A170737,
A170738,
A170739,
A170740,
A170741,
A170742,
A170743,
A170744,
A170745,
A170746,
A170747,
A170748.
Generating functions of the form (1+x)/(1-k*x) for k=31 to 50:
A170749,
A170750,
A170751,
A170752,
A170753,
A170754,
A170755,
A170756,
A170757,
A170758,
A170759,
A170760,
A170761,
A170762,
A170763,
A170764,
A170765,
A170766,
A170767,
A170768,
A170769.
-
k := 3; if n = 0 then 1 else k*(k-1)^(n-1); fi;
-
Join[{1}, 3*2^Range[0, 60]] (* Vladimir Joseph Stephan Orlovsky, Jun 09 2011 *)
Table[2^n+Floor[2^(n-1)], {n,0,30}] (* Martin Grymel, Oct 17 2012 *)
CoefficientList[Series[(1+x)/(1-2x),{x,0,40}],x] (* or *) LinearRecurrence[ {2},{1,3},40] (* Harvey P. Dale, May 04 2017 *)
-
a(n)=if(n,3<Charles R Greathouse IV, Jan 12 2012
A055830
Triangle T read by rows: diagonal differences of triangle A037027.
Original entry on oeis.org
1, 1, 0, 2, 1, 0, 3, 3, 1, 0, 5, 7, 4, 1, 0, 8, 15, 12, 5, 1, 0, 13, 30, 31, 18, 6, 1, 0, 21, 58, 73, 54, 25, 7, 1, 0, 34, 109, 162, 145, 85, 33, 8, 1, 0, 55, 201, 344, 361, 255, 125, 42, 9, 1, 0, 89, 365, 707, 850, 701, 413, 175, 52, 10, 1, 0, 144, 655, 1416, 1918, 1806, 1239, 630, 236, 63, 11, 1, 0
Offset: 0
Triangle begins:
1
1, 0
2, 1, 0
3, 3, 1, 0
5, 7, 4, 1, 0
8, 15, 12, 5, 1, 0
13, 30, 31, 18, 6, 1, 0
21, 58, 73, 54, 25, 7, 1, 0
34, 109, 162, 145, 85, 33, 8, 1, 0
55, 201, 344, 361, 255, 125, 42, 9, 1, 0
...
Row sums:
A001333 (numerators of continued fraction convergents to sqrt(2)).
-
function T(n,k)
if k lt 0 or k gt n then return 0;
elif k eq 0 then return Fibonacci(n+1);
elif n eq 1 and k eq 1 then return 0;
else return T(n-1,k-1) + T(n-1,k) + T(n-2,k);
end if; return T; end function;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 21 2020
-
with(combinat);
T:= proc(n, k) option remember;
if k<0 or k>n then 0
elif k=0 then fibonacci(n+1)
elif n=1 and k=1 then 0
else T(n-1, k-1) + T(n-1, k) + T(n-2, k)
fi; end:
seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Jan 21 2020
-
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==0, Fibonacci[n+1], If[n==1 && k==1, 0, T[n-1, k-1] + T[n-1, k] + T[n-2, k]]]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 19 2017 *)
-
T(n,k) = if(k<0 || k>n, 0, if(k==0, fibonacci(n+1), if(n==1 && k==1, 0, T(n-1, k-1) + T(n-1, k) + T(n-2, k) )));
for(n=0,12, for(k=0, n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jan 21 2020
-
@CachedFunction
def T(n, k):
if (k<0 or k>n): return 0
elif (k==0): return fibonacci(n+1)
elif (n==1 and k==1): return 0
else: return T(n-1, k-1) + T(n-1, k) + T(n-2, k)
[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jan 21 2020
A052924
Expansion of g.f.: (1-x)/(1 - 3*x - x^2).
Original entry on oeis.org
1, 2, 7, 23, 76, 251, 829, 2738, 9043, 29867, 98644, 325799, 1076041, 3553922, 11737807, 38767343, 128039836, 422886851, 1396700389, 4612988018, 15235664443, 50319981347, 166195608484, 548906806799, 1812916028881
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
- L. Euler, Introductio in analysin infinitorum, 1748, section 338. English translation by John D. Blanton, Introduction to Analysis of the Infinite, 1988, Springer, p. 286.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Sergio Falcón, The k-Fibonacci difference sequences, Chaos, Solitons & Fractals, Volume 87, June 2016, Pages 153-157.
- Sergio Falcón and Ángel Plaza, On the Fibonacci k-numbers, Chaos, Solitons & Fractals 2007; 32(5): 1615-24.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 909
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (3,1).
-
a:=[1,2];; for n in [3..30] do a[n]:=3*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Jun 09 2019
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x)/(1-3*x-x^2) )); // G. C. Greubel, Jun 09 2019
-
spec:= [S,{S=Sequence(Prod(Sequence(Z),Union(Z,Z,Prod(Z,Z))))}, unlabeled]: seq(combstruct[count](spec,size=n), n=0..30);
seq(coeff(series((1-x)/(1-3*x-x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 16 2019
-
CoefficientList[Series[(1-x)/(1-3*x-x^2), {x,0,30}], x] (* G. C. Greubel, Jun 09 2019 *)
-
Vec((1-x)/(1-3*x-x^2)+O(x^30)) \\ Charles R Greathouse IV, Nov 20 2011
-
((1-x)/(1-3*x-x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jun 09 2019
A155116
a(n) = 3*a(n-1) + 3*a(n-2), n>2, a(0)=1, a(1)=2, a(2)=8.
Original entry on oeis.org
1, 2, 8, 30, 114, 432, 1638, 6210, 23544, 89262, 338418, 1283040, 4864374, 18442242, 69919848, 265086270, 1005018354, 3810313872, 14445996678, 54768931650, 207644784984, 787241149902, 2984657804658, 11315696863680, 42901064005014
Offset: 0
Sequences of the form a(n) = m*(a(n-1) + a(n-2)) with a(0)=1, a(1) = m-1, a(2) = m^2 -1:
A155020 (m=2), this sequence (m=3),
A155117 (m=4),
A155119 (m=5),
A155127 (m=6),
A155130 (m=7),
A155132 (m=8),
A155144 (m=9),
A155157 (m=10).
-
m:=3; [1] cat [n le 2 select (m-1)*(m*n-(m-1)) else m*(Self(n-1) + Self(n-2)): n in [1..30]]; // G. C. Greubel, Mar 25 2021
-
With[{m=3}, LinearRecurrence[{m, m}, {1, m-1, m^2-1}, 30]] (* G. C. Greubel, Mar 25 2021 *)
-
Vec((1-x-x^2)/(1-3*x-3*x^2)+O(x^99)) \\ Charles R Greathouse IV, Jan 12 2012
-
m=3; [1]+[-(m-1)*(sqrt(m)*i)^(n-2)*chebyshev_U(n, -sqrt(m)*i/2) for n in (1..30)] # G. C. Greubel, Mar 25 2021
A135597
Square array read by antidiagonals: row m (m >= 1) satisfies b(0) = b(1) = 1; b(n) = m*b(n-1) + b(n-2).
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 5, 1, 1, 5, 13, 17, 8, 1, 1, 6, 21, 43, 41, 13, 1, 1, 7, 31, 89, 142, 99, 21, 1, 1, 8, 43, 161, 377, 469, 239, 34, 1, 1, 9, 57, 265, 836, 1597, 1549, 577, 55, 1, 1, 10, 73, 407, 1633, 4341, 6765, 5116, 1393, 89, 1, 1, 11, 91, 593, 2906
Offset: 1
Array begins:
========================================================
m\n| 0 1 2 3 4 5 6 7 8 9
---|----------------------------------------------------
1 | 1 1 2 3 5 8 13 21 34 55 ...
2 | 1 1 3 7 17 41 99 239 577 1393 ...
3 | 1 1 4 13 43 142 469 1549 5116 16897 ...
4 | 1 1 5 21 89 377 1597 6765 28657 121393 ...
5 | 1 1 6 31 161 836 4341 22541 117046 607771 ...
6 | 1 1 7 43 265 1633 10063 62011 382129 2354785 ...
7 | 1 1 8 57 407 2906 20749 148149 1057792 7552693 ...
8 | 1 1 9 73 593 4817 39129 317849 2581921 20973217 ...
...
-
A135597 := proc(m,c) coeftayl( (m*x-x-1)/(x^2+m*x-1),x=0,c) ; end: for d from 1 to 15 do for c from 0 to d-1 do printf("%d,",A135597(d-c,c)) ; od: od: # R. J. Mathar, Apr 21 2008
-
a[, 0] = a[, 1] = 1; a[m_, n_] := m*a[m, n-1] + a[m, n-2]; Table[a[m-n+1, n], {m, 0, 11}, {n, 0, m}] // Flatten (* Jean-François Alcover, Jan 20 2014 *)
A136158
Triangle whose rows are generated by A136157^n * [1, 1, 0, 0, 0, ...].
Original entry on oeis.org
1, 1, 1, 3, 4, 1, 9, 15, 7, 1, 27, 54, 36, 10, 1, 81, 189, 162, 66, 13, 1, 243, 648, 675, 360, 105, 16, 1, 729, 2187, 2673, 1755, 675, 153, 19, 1, 2187, 7290, 10206, 7938, 3780, 1134, 210, 22, 1, 6561, 24057, 37908, 34020, 19278, 7182, 1764, 276, 25, 1
Offset: 0
First few rows of the triangle:
1;
1, 1;
3, 4, 1;
9, 15, 7, 1;
27, 54, 36, 10, 1;
81, 189, 162, 66, 13, 1;
243, 648, 675, 360, 105, 16, 1;
729, 2187, 2673, 1755, 675, 153, 19, 1;
...
-
A136158:= func< n,k | n eq 0 select 1 else 3^(n-k-1)*(n+2*k)* Binomial(n, k)/n >;
[A136158(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 22 2023; Dec 27 2023
-
A136158[n_,k_]:= If[n==0, 1, 3^(n-k-1)*(n+2*k)*Binomial[n,k]/n];
Table[A136158[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 22 2023; Dec 27 2023 *)
-
T(n,k) = if ((n<0) || (k<0), return(0)); if ((n==0) && (k==0), return(1)); if (n==1, if (k<=1, return(1))); 3*T(n-1,k) + T(n-1,k-1);
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 25 2023
-
def A136158(n,k): return 1 if (n==0) else 3^(n-k-1)*((n+2*k)/n)*binomial(n, k)
flatten([[A136158(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 22 2023; Dec 27 2023
A286513
Array read by antidiagonals: T(m,n) is the number of independent sets in the stacked prism graph C_m X P_n.
Original entry on oeis.org
1, 1, 3, 1, 7, 4, 1, 17, 13, 7, 1, 41, 43, 35, 11, 1, 99, 142, 181, 81, 18, 1, 239, 469, 933, 621, 199, 29, 1, 577, 1549, 4811, 4741, 2309, 477, 47, 1, 1393, 5116, 24807, 36211, 26660, 8303, 1155, 76, 1, 3363, 16897, 127913, 276561, 307983, 143697, 30277, 2785, 123
Offset: 1
Table starts:
=============================================================
m\n| 1 2 3 4 5 6 7
---|---------------------------------------------------------
1 | 1 1 1 1 1 1 1 ...
2 | 3 7 17 41 99 239 577 ...
3 | 4 13 43 142 469 1549 5116 ...
4 | 7 35 181 933 4811 24807 127913 ...
5 | 11 81 621 4741 36211 276561 2112241 ...
6 | 18 199 2309 26660 307983 3557711 41097664 ...
7 | 29 477 8303 143697 2488431 43089985 746156517 ...
8 | 47 1155 30277 788453 20546803 535404487 13951571713 ...
...
A374439
Triangle read by rows: the coefficients of the Lucas-Fibonacci polynomials. T(n, k) = T(n - 1, k) + T(n - 2, k - 2) with initial values T(n, k) = k + 1 for k < 2.
Original entry on oeis.org
1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 2, 3, 4, 1, 1, 2, 4, 6, 3, 2, 1, 2, 5, 8, 6, 6, 1, 1, 2, 6, 10, 10, 12, 4, 2, 1, 2, 7, 12, 15, 20, 10, 8, 1, 1, 2, 8, 14, 21, 30, 20, 20, 5, 2, 1, 2, 9, 16, 28, 42, 35, 40, 15, 10, 1, 1, 2, 10, 18, 36, 56, 56, 70, 35, 30, 6, 2
Offset: 0
Triangle starts:
[ 0] [1]
[ 1] [1, 2]
[ 2] [1, 2, 1]
[ 3] [1, 2, 2, 2]
[ 4] [1, 2, 3, 4, 1]
[ 5] [1, 2, 4, 6, 3, 2]
[ 6] [1, 2, 5, 8, 6, 6, 1]
[ 7] [1, 2, 6, 10, 10, 12, 4, 2]
[ 8] [1, 2, 7, 12, 15, 20, 10, 8, 1]
[ 9] [1, 2, 8, 14, 21, 30, 20, 20, 5, 2]
[10] [1, 2, 9, 16, 28, 42, 35, 40, 15, 10, 1]
.
Table of interpolated sequences:
| n | A039834 & A000045 | A000032 | A000129 | A048654 |
| n | -P(n,-1) | P(n,1) |2^n*P(n,-1/2)|2^n*P(n,1/2)|
| | Fibonacci | Lucas | Pell | Pell* |
| 0 | -1 | 1 | 1 | 1 |
| 1 | 1 | 3 | 0 | 4 |
| 2 | 0 | 4 | 1 | 9 |
| 3 | 1 | 7 | 2 | 22 |
| 4 | 1 | 11 | 5 | 53 |
| 5 | 2 | 18 | 12 | 128 |
| 6 | 3 | 29 | 29 | 309 |
| 7 | 5 | 47 | 70 | 746 |
| 8 | 8 | 76 | 169 | 1801 |
| 9 | 13 | 123 | 408 | 4348 |
Adding and subtracting the values in a row of the table (plus halving the values obtained in this way):
A022087,
A055389,
A118658,
A052542,
A163271,
A371596,
A324969,
A212804,
A077985,
A069306,
A215928.
-
function T(n,k) // T = A374439
if k lt 0 or k gt n then return 0;
elif k le 1 then return k+1;
else return T(n-1,k) + T(n-2,k-2);
end if;
end function;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 23 2025
-
A374439 := (n, k) -> ifelse(k::odd, 2, 1)*binomial(n - irem(k, 2) - iquo(k, 2), iquo(k, 2)):
# Alternative, using the function qStirling2 from A333143:
T := (n, k) -> 2^irem(k, 2)*qStirling2(n, k, -1):
seq(seq(T(n, k), k = 0..n), n = 0..10);
-
A374439[n_, k_] := (# + 1)*Binomial[n - (k + #)/2, (k - #)/2] & [Mod[k, 2]];
Table[A374439[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Paolo Xausa, Jul 24 2024 *)
-
from functools import cache
@cache
def T(n: int, k: int) -> int:
if k > n: return 0
if k < 2: return k + 1
return T(n - 1, k) + T(n - 2, k - 2)
-
from math import comb as binomial
def T(n: int, k: int) -> int:
o = k & 1
return binomial(n - o - (k - o) // 2, (k - o) // 2) << o
-
def P(n, x):
if n < 0: return P(n, x)
return sum(T(n, k)*x**k for k in range(n + 1))
def sgn(x: int) -> int: return (x > 0) - (x < 0)
# Table of interpolated sequences
print("| n | A039834 & A000045 | A000032 | A000129 | A048654 |")
print("| n | -P(n,-1) | P(n,1) |2^n*P(n,-1/2)|2^n*P(n,1/2)|")
print("| | Fibonacci | Lucas | Pell | Pell* |")
f = "| {0:2d} | {1:9d} | {2:4d} | {3:5d} | {4:4d} |"
for n in range(10): print(f.format(n, -P(n, -1), P(n, 1), int(2**n*P(n, -1/2)), int(2**n*P(n, 1/2))))
-
from sage.combinat.q_analogues import q_stirling_number2
def A374439(n,k): return (-1)^((k+1)//2)*2^(k%2)*q_stirling_number2(n+1, k+1, -1)
print(flatten([[A374439(n, k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 23 2025
A180148
a(n) = 3*a(n-1) + a(n-2) with a(0)=2 and a(1)=5.
Original entry on oeis.org
2, 5, 17, 56, 185, 611, 2018, 6665, 22013, 72704, 240125, 793079, 2619362, 8651165, 28572857, 94369736, 311682065, 1029415931, 3399929858, 11229205505, 37087546373, 122491844624, 404563080245, 1336181085359, 4413106336322, 14575500094325, 48139606619297
Offset: 0
Cf.
A000602 (more information on n-alkanes).
-
a:= n-> (<<0|1>, <1|3>>^n. <<2, 5>>)[1,1]:
seq(a(n), n=0..27); # Alois P. Heinz, Jul 14 2021
-
LinearRecurrence[{3, 1}, {5, 7}, 20] (* Eric W. Weisstein, Jul 14 2021 *)
CoefficientList[Series[(2 - x)/(1 - 3 x - x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Jul 14 2021 *)
-
a(n)=([0,1;1,3]^n*[2;5])[1,1] \\ Charles R Greathouse IV, Oct 13 2016
A259427
T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with each 2X2 subblock having clockwise pattern 0000 0001 0011 or 0111.
Original entry on oeis.org
13, 43, 43, 142, 243, 142, 469, 1366, 1366, 469, 1549, 7695, 12953, 7695, 1549, 5116, 43347, 123306, 123306, 43347, 5116, 16897, 244228, 1172659, 1990133, 1172659, 244228, 16897, 55807, 1376077, 11155819, 32060569, 32060569, 11155819, 1376077
Offset: 1
Some solutions for n=3 k=4
..0..0..1..1..0....0..0..0..1..0....1..0..0..1..1....1..1..0..1..1
..0..0..1..0..0....0..1..0..0..0....0..0..1..1..0....0..0..0..0..0
..0..0..0..0..1....0..1..1..0..1....0..0..0..0..0....0..0..0..0..1
..1..0..0..0..0....1..1..0..0..0....1..1..0..0..0....0..1..0..1..1
Showing 1-10 of 24 results.
Comments