cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A164948 Fibonacci matrix read by antidiagonals. (Inverse of A136158.)

Original entry on oeis.org

1, 1, -1, 3, -4, 1, 9, -15, 7, -1, 27, -54, 36, -10, 1, 81, -189, 162, -66, 13, -1, 243, -648, 675, -360, 105, -16, 1, 729, -2187, 2673, -1755, 675, -153, 19, -1, 2187, -7290, 10206, -7938, 3780, -1134, 210, -22, 1, 6561, -24057, 37908, -34020, 19278, -7182, 1764, -276, 25, -1, 19683, -78732, 137781, -139968, 91854, -40824, 12474, -2592, 351, -28, 1
Offset: 0

Views

Author

Mark Dols, Sep 01 2009

Keywords

Comments

Triangle, read by rows, given by [1,2,0,0,0,0,0,0,0,...] DELTA [-1,0,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Sep 02 2009

Examples

			As triangle:
    1;
    1,   -1;
    3,   -4,    1;
    9,  -15,    7,   -1;
   27,  -54,   36,  -10,    1;
   81, -189,  162,  -66,   13,   -1;
  243, -648,  675, -360,  105,  -16,    1;
		

Crossrefs

Programs

  • Magma
    A164948:= func< n,k | n eq 0 select 1 else (-1)^k*3^(n-k-1)*(n+2*k)*Binomial(n,k)/n >;
    [A164948(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 26 2023
    
  • Mathematica
    A164948[n_,k_]:= If[n==0,1,(-1)^k*3^(n-k-1)*(n+2*k)*Binomial[n,k]/n];
    Table[A164948[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 26 2023 *)
  • SageMath
    def A164948(n,k): return 1 if (n==0) else (-1)^k*3^(n-k-1)*((n+2*k)/n)*binomial(n, k)
    flatten([[A164948(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 26 2023

Formula

Sum_{k=0..n} T(n, k) = A000007(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A001519(n).
From Philippe Deléham, Oct 09 2011: (Start)
T(n,k) = 3*T(n-1,k) - T(n-1,k-1) with T(0,0)=1, T(1,0)=1, T(1,1)=-1.
Row n: Expansion of (1-x)*(3-x)^(n-1), n>0. (End)
G.f.: (1-2*x)/(1-3*x+x*y). - R. J. Mathar, Aug 12 2015
From G. C. Greubel, Dec 26 2023: (Start)
T(n, k) = (-1)^k * A136158(n, k).
T(n, k) = (-1)^k*3^(n-k-1)*((n+2*k)/n)*binomial(n, k), for n > 0, with T(0, 0) = 1.
T(n, 0) = A133494(n).
T(n, 1) = -A006234(n+2), n >= 1.
T(n, 2) = A080420(n-2), n >= 2.
T(n, 3) = -A080421(n-3), n >= 3.
T(2*n, n) = 4*(-1)^n*A098399(n-1) - (1/3)*[n=0].
T(n, n-4) = 27*(-1)^n*A001296(n-3), n >= 4.
T(n, n-3) = 9*(-1)^(n-1)*A002411(n-2), n >= 3.
T(n, n-2) = 3*(-1)^n*A000326(n-1) = (-1)^n*A062741(n-1), n >= 2.
T(n, n-1) = (-1)^(n-1)*A016777(n-1), n >= 1.
T(n, n) = (-1)^n.
Sum_{k=0..n} (-1)^k*T(n, k) = A081294(n).
Sum_{k=0..n} (-1)^k*T(n-k, k) = A003688(n). (End)

Extensions

More terms from Philippe Deléham, Oct 09 2011

A081294 Expansion of (1-2*x)/(1-4*x).

Original entry on oeis.org

1, 2, 8, 32, 128, 512, 2048, 8192, 32768, 131072, 524288, 2097152, 8388608, 33554432, 134217728, 536870912, 2147483648, 8589934592, 34359738368, 137438953472, 549755813888, 2199023255552, 8796093022208, 35184372088832
Offset: 0

Views

Author

Paul Barry, Mar 17 2003

Keywords

Comments

Binomial transform of A046717. Second binomial transform of A000302 (with interpolated zeros). Partial sums are A007583.
Counts closed walks of length 2n at a vertex of the cyclic graph on 4 nodes C_4. With interpolated zeros, counts closed walks of length n at a vertex of the cyclic graph on 4 nodes C_4. - Paul Barry, Mar 10 2004
In general, Sum_{k=0..n} Sum_{j=0..n} C(2*(n-k), j)*C(2*k, j)*r^j has expansion (1 - (r+1)*x)/(1 - (r+3)*x - (r-1)*(r+3)*x^2 + (r-1)^3*x^3). - Paul Barry, Jun 04 2005 [corrected by Jason Yuen, Jan 20 2025]
a(n) is the number of binary strings of length 2n with an even number of 0's (and hence an even number of 1's). - Toby Gottfried, Mar 22 2010
Number of compositions of n where there are 2 sorts of part 1, 4 sorts of part 2, 8 sorts of part 3, ..., 2^k sorts of part k. - Joerg Arndt, Aug 04 2014
a(n) is also the number of permutations simultaneously avoiding 231 and 321 in the classical sense which can be realized as labels on an increasing strict binary tree with 2n-1 nodes. See A245904 for more information on increasing strict binary trees. - Manda Riehl Aug 07 2014
INVERT transform of powers of 2 (A000079). - Alois P. Heinz, Feb 11 2021
a(n) is the number of elements in an n-interval of the binomial poset of even-sized subsets of positive integers, cf. Stanley reference and second formula by Paul Barry. Each multichain 0 = x_0 <= x_1 <= x_2 = 1 in such an n-interval corresponds to a closed walk described above by Paul Barry. More generally, each multichain 0 = x_0 <= x_1 <= ... <= x_k = 1 corresponds to a closed walk of length 2n on the k-dimensional hypercube, cf. A054879, A092812, A121822. - Geoffrey Critzer, Apr 21 2023

Examples

			G.f. = 1 + 2*x + 8*x^2 + 32*x^3 + 128*x^4 + 512*x^5 + 2048*x^6 + 8192*x^7 + ...
		

References

  • Richard P. Stanley, Enumerative Combinatorics, Vol 1, second edition, Example 3.18.3-f, page 323.

Crossrefs

Row sums of triangle A136158.
Cf. A000079, A081295, A009117, A016742, A054879, A092812, A121822. Essentially the same as A004171.

Programs

  • Magma
    [(4^n+0^n)/2: n in [0..30]]; // Vincenzo Librandi, Jul 26 2011
    
  • Magma
    R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( (1-2*x)/(1-4*x))); // Marius A. Burtea, Jan 20 2020
    
  • Maple
    a:= n-> 2^max(0, (2*n-1)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jul 20 2017
  • Mathematica
    CoefficientList[Series[(1-2x)/(1-4x),{x,0,40}],x] (* or *)
    Join[{1}, NestList[4 # &, 2, 40]] (* Harvey P. Dale, Apr 22 2011 *)
  • PARI
    a(n)=1<Charles R Greathouse IV, Jul 25 2011
    
  • PARI
    x='x+O('x^100); Vec((1-2*x)/(1-4*x)) \\ Altug Alkan, Dec 21 2015

Formula

G.f.: (1-2*x)/(1-4*x).
a(n) = 4*a(n-1) n > 1, with a(0)=1, a(1)=2.
a(n) = (4^n+0^n)/2 (i.e., 1 followed by 4^n/2, n > 0).
E.g.f.: exp(2*x)*cosh(2*x) = (exp(4*x)+exp(0))/2. - Paul Barry, May 10 2003
a(n) = Sum_{k=0..n} C(2*n, 2*k). - Paul Barry, May 20 2003
a(n) = A001045(2*n+1) - A001045(2*n-1) + 0^n/2. - Paul Barry, Mar 10 2004
a(n) = 2^n*A011782(n); a(n) = gcd(A011782(2n), A011782(2n+1)). - Paul Barry, Jan 12 2005
a(n) = Sum_{k=0..n} Sum_{j=0..n} C(2*(n-k), j)*C(2*k, j). - Paul Barry, Jun 04 2005
a(n) = Sum_{k=0..n} A038763(n,k). - Philippe Deléham, Sep 22 2006
a(n) = Integral_{x=0..4} p(n,x)^2/(Pi*sqrt(x(4-x))) dx, where p(n,x) is the sequence of orthogonal polynomials defined by C(2*n,n): p(n,x) = (2*x-4)*p(n-1,x) - 4*p(n-2,x), with p(0,x)=1, p(1,x)=-2+x. - Paul Barry, Mar 01 2007
a(n) = ((2+sqrt(4))^n + (2-sqrt(4))^n)/2. - Al Hakanson (hawkuu(AT)gmail.com), Nov 22 2008
a(n) = A000079(n) * A011782(n). - Philippe Deléham, Dec 01 2008
a(n) = A004171(n-1) = A028403(n) - A000079(n) for n >= 1. - Jaroslav Krizek, Jul 27 2009
a(n) = Sum_{k=0..n} A201730(n,k)*3^k. - Philippe Deléham, Dec 06 2011
a(n) = Sum_{k=0..n} A134309(n,k)*2^k = Sum_{k=0..n} A055372(n,k). - Philippe Deléham, Feb 04 2012
G.f.: Q(0), where Q(k) = 1 - 2*x/(1 - 2/(2 - 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 29 2013
E.g.f.: 1/2 + exp(4*x)/2 = (Q(0)+1)/2, where Q(k) = 1 + 4*x/(2*k+1 - 2*x*(2*k+1)/(2*x + (k+1)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 29 2013
a(n) = ceiling( 2^(2n-1) ). - Wesley Ivan Hurt, Jun 30 2013
G.f.: 1 + 2*x/(1 + x)*( 1 + 5*x/(1 + 4*x)*( 1 + 8*x/(1 + 7*x)*( 1 + 11*x/(1 + 10*x)*( 1 + ... )))). - Peter Bala, May 27 2017
Sum_{n>=0} 1/a(n) = 5/3. - Amiram Eldar, Aug 18 2022
Sum_{n>=0} a(n)*x^n/A000680(n) = E(x)^2 where E(x) = Sum_{n>=0} x^n/A000680(n). - Geoffrey Critzer, Apr 21 2023

A193722 Triangular array: the fusion of (x+1)^n and (x+2)^n; see Comments for the definition of fusion.

Original entry on oeis.org

1, 1, 2, 1, 5, 6, 1, 8, 21, 18, 1, 11, 45, 81, 54, 1, 14, 78, 216, 297, 162, 1, 17, 120, 450, 945, 1053, 486, 1, 20, 171, 810, 2295, 3888, 3645, 1458, 1, 23, 231, 1323, 4725, 10773, 15309, 12393, 4374, 1, 26, 300, 2016, 8694, 24948, 47628, 58320, 41553, 13122
Offset: 0

Views

Author

Clark Kimberling, Aug 04 2011

Keywords

Comments

Suppose that p = p(n)*x^n + p(n-1)*x^(n-1) + ... + p(1)*x + p(0) is a polynomial and that Q is a sequence of polynomials
...
q(k,x)=t(k,0)*x^k+t(k,1)*x^(k-1)+...+t(k,k-1)*x+t(k,k),
...
for k=0,1,2,... The Q-upstep of p is the polynomial given by
...
U(p) = p(n)*q(n+1,x) + p(n-1)*q(n,x) + ... + p(0)*q(1,x); note that q(0,x) does not appear.
...
Now suppose that P=(p(n,x)) and Q=(q(n,x)) are sequences of polynomials, where n indicates degree. The fusion of P by Q, denoted by P**Q, is introduced here as the sequence W=(w(n,x)) of polynomials defined by w(0,x)=1 and w(n+1,x)=U(p(n,x)).
...
Strictly speaking, ** is an operation on sequences of polynomials. However, if P and Q are regarded as numerical triangles (e.g., coefficients of polynomials), then ** can be regarded as an operation on numerical triangles. In this case, row (n+1) of P**Q, for n >= 0, is given by the matrix product P(n)*QQ(n), where P(n)=(p(n,n)...p(n,n-1)......p(n,1), p(n,0)) and QQ(n) is the (n+1)-by-(n+2) matrix given by
...
q(n+1,0) .. q(n+1,1)........... q(n+1,n) .... q(n+1,n+1)
0 ......... q(n,0)............. q(n,n-1) .... q(n,n)
0 ......... 0.................. q(n-1,n-2) .. q(n-1,n-1)
...
0 ......... 0.................. q(2,1) ...... q(2,2)
0 ......... 0 ................. q(1,0) ...... q(1,1);
here, the polynomial q(k,x) is taken to be
q(k,0)*x^k + q(k,1)x^(k-1) + ... + q(k,k)*x+q(k,k-1); i.e., "q" is used instead of "t".
...
If s=(s(1),s(2),s(3),...) is a sequence, then the infinite square matrix indicated by
s(1)...s(2)...s(3)...s(4)...s(5)...
..0....s(1)...s(2)...s(3)...s(4)...
..0......0....s(1)...s(2)...s(3)...
..0......0.......0...s(1)...s(2)...
is the self-fusion matrix of s; e.g., A202453, A202670.
...
Example: let p(n,x)=(x+1)^n and q(n,x)=(x+2)^n. Then
...
w(0,x) = 1 by definition of W
w(1,x) = U(p(0,x)) = U(1) = p(0,0)*q(1,x) = 1*(x+2) = x+2;
w(2,x) = U(p(1,x)) = U(x+1) = q(2,x) + q(1,x) = x^2+5x+6;
w(3,x) = U(p(2,x)) = U(x^2+2x+1) = q(3,x) + 2q(2,x) + q(1,x) = x^3+8x^2+21x+18;
...
From these first 4 polynomials in the sequence P**Q, we can write the first 4 rows of P**Q when P, Q, and P**Q are regarded as triangles:
1;
1, 2;
1, 5, 6;
1, 8, 21, 18;
...
Generally, if P and Q are the sequences given by p(n,x)=(ax+b)^n and q(n,x)=(cx+d)^n, then P**Q is given by (cx+d)(bcx+a+bd)^n.
...
In the following examples, r(P**Q) is the mirror of P**Q, obtained by reversing the rows of P**Q.
...
..P...........Q.........P**Q.......r(P**Q)
(x+1)^n.....(x+1)^n.....A081277....A118800 (unsigned)
(x+1)^n.....(x+2)^n.....A193722....A193723
(x+2)^n.....(x+1)^n.....A193724....A193725
(x+2)^n.....(x+2)^n.....A193726....A193727
(x+2)^n.....(2x+1)^n....A193728....A193729
(2x+1)^n....(x+1)^n.....A038763....A136158
(2x+1)^n....(2x+1)^n....A193730....A193731
(2x+1)^n,...(x+1)^n.....A193734....A193735
...
Continuing, let u denote the polynomial x^n+x^(n-1)+...+x+1, and let Fibo[n,x] denote the n-th Fibonacci polynomial.
...
P.............Q.........P**Q.......r(P**Q)
Fib[n+1,x]...(x+1)^n....A193736....A193737
u.............u.........A193738....A193739
u**u..........u**u......A193740....A193741
...
Regarding A193722:
col 1 ..... A000012
col 2 ..... A016789
col 3 ..... A081266
w(n,n) .... A025192
w(n,n-1) .. A081038
...
Associated with "upstep" as defined above is "downstep" defined at A193842 in connection with fission.

Examples

			First six rows:
  1;
  1,   2;
  1,   5,   6;
  1,   8,  21,  18;
  1,  11,  45,  81,  54;
  1,  14,  78, 216, 297, 162;
		

Crossrefs

Programs

  • GAP
    Flat(List([0..10], n-> List([0..n], k-> 3^(k-1)*( Binomial(n-1,k) + 2*Binomial(n,k) ) ))); # G. C. Greubel, Feb 18 2020
  • Magma
    [3^(k-1)*( Binomial(n-1,k) + 2*Binomial(n,k) ): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 18 2020
    
  • Maple
    fusion := proc(p, q, n) local d, k;
    p(n-1,0)*q(n,x)+add(coeff(p(n-1,x),x^k)*q(n-k,x), k=1..n-1);
    [1,seq(coeff(%,x,n-1-k), k=0..n-1)] end:
    p := (n, x) -> (x + 1)^n; q := (n, x) -> (x + 2)^n;
    A193722_row := n -> fusion(p, q, n);
    for n from 0 to 5 do A193722_row(n) od; # Peter Luschny, Jul 24 2014
  • Mathematica
    (* First program *)
    z = 9; a = 1; b = 1; c = 1; d = 2;
    p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n
    t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
    w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
    g[n_] := CoefficientList[w[n, x], {x}]
    TableForm[Table[Reverse[g[n]], {n, -1, z}]]
    Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193722 *)
    TableForm[Table[g[n], {n, -1, z}]]
    Flatten[Table[g[n], {n, -1, z}]] (* A193723 *)
    (* Second program *)
    Table[3^(k-1)*(Binomial[n-1,k] +2*Binomial[n,k]), {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 18 2020 *)
  • PARI
    T(n,k) = 3^(k-1)*(binomial(n-1,k) +2*binomial(n,k)); \\ G. C. Greubel, Feb 18 2020
    
  • Sage
    def fusion(p, q, n):
        F = p(n-1,0)*q(n,x)+add(expand(p(n-1,x)).coefficient(x,k)*q(n-k,x) for k in (1..n-1))
        return [1]+[expand(F).coefficient(x,n-1-k) for k in (0..n-1)]
    A193842_row = lambda k: fusion(lambda n,x: (x+1)^n, lambda n,x: (x+2)^n, k)
    for n in range(7): A193842_row(n) # Peter Luschny, Jul 24 2014
    

Formula

Triangle T(n,k), read by rows, given by [1,0,0,0,0,0,0,0,...] DELTA [2,1,0,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 04 2011
T(n,k) = 3*T(n-1,k-1) + T(n-1,k) with T(0,0)=T(1,0)=1 and T(1,1)=2. - Philippe Deléham, Oct 05 2011
T(n, k) = 3^(k-1)*( binomial(n-1,k) + 2*binomial(n,k) ). - G. C. Greubel, Feb 18 2020

A038763 Triangular matrix arising in enumeration of catafusenes, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 4, 3, 1, 7, 15, 9, 1, 10, 36, 54, 27, 1, 13, 66, 162, 189, 81, 1, 16, 105, 360, 675, 648, 243, 1, 19, 153, 675, 1755, 2673, 2187, 729, 1, 22, 210, 1134, 3780, 7938, 10206, 7290, 2187, 1, 25, 276, 1764, 7182, 19278, 34020, 37908, 24057, 6561, 1, 28, 351, 2592, 12474, 40824, 91854, 139968, 137781, 78732, 19683
Offset: 0

Views

Author

N. J. A. Sloane, May 03 2000

Keywords

Comments

Triangle T(n,k), 0<=k<=n, read by rows, given by [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 10 2005
Triangle read by rows, n-th row = X^(n-1) * [1, 1, 0, 0, 0, ...] where X = an infinite bidiagonal matrix with (1,1,1,...) in the main diagonal and (3,3,3,...) in the subdiagonal; given row 0 = 1. - Gary W. Adamson, Jul 19 2008
Fusion of polynomial sequences P and Q given by p(n,x)=(x+2)^n and q(n,x)=(2x+1)^n; see A193722 for the definition of fusion of two sequences of polynomials or triangular arrays. - Clark Kimberling, Aug 04 2011

Examples

			Triangle begins:
  1;
  1,  1;
  1,  4,   3;
  1,  7,  15,   9;
  1, 10,  36,  54,   27;
  1, 13,  66, 162,  189,   81;
  1, 16, 105, 360,  675,  648,  243;
  1, 19, 153, 675, 1755, 2673, 2187, 729;
		

Crossrefs

Programs

  • Magma
    A038763:= func< n,k | n eq 0 select 1 else 3^(k-1)*(3*n-2*k)*Binomial(n,k)/n >;
    [A038763(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 27 2023
    
  • Mathematica
    A038763[n_,k_]:= If[n==0, 1, 3^(k-1)*(3*n-2*k)*Binomial[n,k]/n];
    Table[A038763[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 27 2023 *)
  • PARI
    T(n,k) = if ((n<0) || (k<0), return(0)); if ((n==0) && (k==0), return(1)); if (n==1, if (k<=1, return(1))); T(n-1,k) + 3*T(n-1,k-1);
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", "))); \\ Michel Marcus, Jul 25 2023
    
  • SageMath
    def A038763(n,k): return 1 if (n==0) else 3^(k-1)*(3*n-2*k)*binomial(n,k)/n
    flatten([[A038763(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 27 2023

Formula

T(n, 0)=1; T(1, 1)=1; T(n, k)=0 for k>n; T(n, k) = T(n-1, k-1)*3 + T(n-1, k) for n >= 2.
Sum_{k=0..n} T(n,k) = A081294(n). - Philippe Deléham, Sep 22 2006
T(n, k) = A136158(n, n-k). - Philippe Deléham, Dec 17 2007
G.f.: (1-2*x*y)/(1-(3*y+1)*x). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Dec 27 2023: (Start)
T(n, 0) = A000012(n).
T(n, 1) = A016777(n-1).
T(n, 2) = A062741(n-1).
T(n, 3) = 9*A002411(n-2).
T(n, 4) = 27*A001296(n-3).
T(n, 5) = 81*A051836(n-4).
T(n, n) = A133494(n).
T(n, n-1) = A006234(n+2).
T(n, n-2) = A080420(n-2).
T(n, n-3) = A080421(n-3).
T(n, n-4) = A080422(n-4).
T(n, n-5) = A080423(n-5).
T(2*n, n) = 4*A098399(n-1) + (2/3)*[n=0].
Sum_{k=0..n} (-1)^k*T(n, k) = A000007(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A006138(n-1) + (2/3)*[n=0].
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A110523(n-1) + (4/3)*[n=0]. (End)

Extensions

More terms from Michel Marcus, Jul 25 2023

A080420 a(n) = (n+1)*(n+6)*3^n/6.

Original entry on oeis.org

1, 7, 36, 162, 675, 2673, 10206, 37908, 137781, 492075, 1732104, 6022998, 20726199, 70681653, 239148450, 803538792, 2683245609, 8910671247, 29443957164, 96855122250, 317297380491, 1035574967097, 3368233731366, 10920608743932, 35303692060125, 113819103201843
Offset: 0

Views

Author

Paul Barry, Feb 19 2003

Keywords

Comments

a(n-1) is the number of words of length n defined on 5 letters that have exactly one a and no b's or exactly two b's and no a's. For example, for n=3, a(2) = 36 since the words are (number of permutations in parentheses): acc (3), add (3), aee (3), acd (6), ace (6), ade (6), bbc (3), bbd (3), bbe (3). - Enrique Navarrete, Jun 10 2025

Crossrefs

T(n,2) in triangle A080419.

Programs

  • Magma
    [(n+1)*(n+6)*3^n/6: n in [0..30]]; // Vincenzo Librandi, Aug 05 2013
    
  • Mathematica
    CoefficientList[Series[(1 - 2 x) / (1 - 3 x)^3, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 05 2013 *)
    Table[(n+1)(n+6)3^n/6,{n,0,30}] (* or *) LinearRecurrence[{9,-27,27},{1,7,36},30] (* Harvey P. Dale, Apr 02 2019 *)
  • SageMath
    [(n+1)*(n+6)*3^n/6 for n in range(31)] # G. C. Greubel, Dec 22 2023

Formula

G.f.: (1-2*x)/(1-3*x)^3.
From G. C. Greubel, Dec 22 2023: (Start)
a(n) = (n+6)*A288834(n)/2, for n >= 1.
a(n) = A136158(n+2, 2).
E.g.f.: (1/2)*(2 + 8*x + 3*x^2)*exp(3*x). (End)
From Amiram Eldar, Jan 11 2024: (Start)
Sum_{n>=0} 1/a(n) = 17721/50 - 4356*log(3/2)/5.
Sum_{n>=0} (-1)^n/a(n) = 4392*log(4/3)/5 - 12591/50. (End)

A080421 a(n) = (n+1)*(n+2)*(n+9)*3^n/18.

Original entry on oeis.org

1, 10, 66, 360, 1755, 7938, 34020, 139968, 557685, 2165130, 8227494, 30705480, 112842639, 409209570, 1466777160, 5203870272, 18294856425, 63795240522, 220829678730, 759344158440, 2595329855811, 8821564534530, 29832927334956, 100419390748800, 336561864306525
Offset: 0

Views

Author

Paul Barry, Feb 19 2003

Keywords

Crossrefs

T(n,3) in triangle A080419.

Programs

  • Magma
    [(n+1)*(n+2)*(n+9)*3^n/18: n in [0..30]]; // Vincenzo Librandi, Aug 05 2013
    
  • Mathematica
    Table[((n+1)(n+2)(n+9)3^n)/18,{n,0,30}] (* or *) LinearRecurrence[ {12,-54,108,-81},{1,10,66,360},30] (* Harvey P. Dale, Mar 21 2012 *)
    CoefficientList[Series[(1 - 2 x) / (1 - 3 x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 05 2013 *)
  • SageMath
    [(n+1)*(n+2)*(n+9)*3^(n-2)/2 for n in range(31)] # G. C. Greubel, Dec 22 2023

Formula

G.f.: (1-2*x)/(1-3*x)^4.
a(n) = A006503(n+1)*3^(n-1).
a(n) = 12*a(n-1)-54*a(n-2)+108*a(n-3)-81*a(n-4). - Harvey P. Dale, Mar 21 2012
From G. C. Greubel, Dec 22 2023: (Start)
a(n) = (n+9)*A036068(n-1).
a(n) = A136158(n+3, 3).
E.g.f.: (1/2)*(2 + 14*x + 15*x^2 + 3*x^3)*exp(3*x). (End)
From Amiram Eldar, Jan 11 2024: (Start)
Sum_{n>=0} 1/a(n) = 44172*log(3/2)/7 - 20050659/7840.
Sum_{n>=0} (-1)^n/a(n) = 44496*log(4/3)/7 - 14329629/7840. (End)

A080422 a(n) = (n+1)*(n+2)*(n+3)*(n+12)*3^n/72.

Original entry on oeis.org

1, 13, 105, 675, 3780, 19278, 91854, 415530, 1804275, 7577955, 30961359, 123589557, 483611310, 1860043500, 7046907660, 26344593252, 97328636181, 355781149065, 1288173125925, 4623863536215, 16466920464456, 58222325927898, 204499905118650, 713919106104750
Offset: 0

Views

Author

Paul Barry, Feb 19 2003

Keywords

Crossrefs

T(n, 4) in triangle A080419.
Cf. A136158.

Programs

  • Magma
    [(n+1)*(n+2)*(n+3)*(n+12)*3^n/72: n in [0..30]]; // Vincenzo Librandi, Aug 05 2013
    
  • Mathematica
    Table[(n + 1) (n + 2) (n + 3) (n + 12) 3^n/72, {n, 0, 30}] (* or *) LinearRecurrence[ {15, -90, 270, -405, 243}, {1, 13, 105, 675, 3780}, 30] (* Harvey P. Dale, Oct 22 2011 *)
    CoefficientList[Series[(1 - 2 x) / (1 - 3 x)^5, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 05 2013 *)
  • SageMath
    [(n+1)*(n+2)*(n+3)*(n+12)*3^(n-3)/8 for n in range(31)] # G. C. Greubel, Dec 22 2023

Formula

G.f.: (1-2*x)/(1-3*x)^5.
For n>4, a(n)=15*a(n-1)-90*a(n-2)+270*a(n-3)-405*a(n-4)+243*a(n-5). - Harvey P. Dale, Oct 22 2011
From G. C. Greubel, Dec 22 2023: (Start)
a(n) = A136158(n+4,4).
E.g.f.: (1/8)*(8 + 80*x + 144*x^2 + 72*x^3 + 9*x^4)*exp(3*x). (End)
From Amiram Eldar, Jan 11 2024: (Start)
Sum_{n>=0} 1/a(n) = 662816499/42350 - 2122848*log(3/2)/55.
Sum_{n>=0} (-1)^n/a(n) = 2135808*log(4/3)/55 - 94614897/8470. (End)

A080423 a(n) = (n+1)*(n+2)*(n+3)*(n+4)*(n+15)*3^n/360.

Original entry on oeis.org

1, 16, 153, 1134, 7182, 40824, 214326, 1058508, 4979799, 22517352, 98513415, 419129802, 1741000716, 7083045648, 28296044604, 111232727064, 431026817373, 1648861601184, 6234757929477, 23328137324646, 86451332438394, 317576323243080, 1157228874847890, 4185605730648420
Offset: 0

Views

Author

Paul Barry, Feb 19 2003

Keywords

Crossrefs

T(n, 5) of triangle A080419.
Cf. A136158.

Programs

  • Magma
    [(n+1)*(n+2)*(n+3)*(n+4)*(n+15)*3^n/360: n in [0..30]]; // Vincenzo Librandi, Aug 05 2013
    
  • Mathematica
    CoefficientList[Series[(1 - 2 x) / (1 - 3 x)^6, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 05 2013 *)
    Table[3^n*(n+15)*Binomial[n+4,4]/15, {n,0,30}] (* G. C. Greubel, Dec 22 2023 *)
  • SageMath
    [3^n*(n+15)*binomial(n+4,4)/15 for n in range(31)] # G. C. Greubel, Dec 22 2023

Formula

G.f.: (1-2*x)/(1-3*x)^6.
From G. C. Greubel, Dec 22 2023: (Start)
a(n) = A136158(n+5, 5).
E.g.f.: (1/40)*(40 + 520*x + 1320*x^2 + 1080*x^3 + 315*x^4 + 27*x^5)*exp(3*x). (End)
From Amiram Eldar, Jan 11 2024: (Start)
Sum_{n>=0} 1/a(n) = 215084880*log(3/2)/1001 - 99766344351/1145144.
Sum_{n>=0} (-1)^n/a(n) = 216218880*log(4/3)/1001 - 498108421095/8016008. (End)

A136157 Triangle by columns, (3, 1, 0, 0, 0, ...) in every column.

Original entry on oeis.org

3, 1, 3, 0, 1, 3, 0, 0, 1, 3, 0, 0, 0, 1, 3, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3
Offset: 0

Views

Author

Gary W. Adamson, Dec 16 2007

Keywords

Comments

Infinite lower triangular matrix with (3, 3, 3, ...) in the main diagonal and (1, 1, 1, ...) in the subdiagonal, with the rest zeros.

Examples

			First few rows of the triangle:
  3;
  1, 3;
  0, 1, 3;
  0, 0, 1, 3;
  0, 0, 0, 1, 3;
  0, 0, 0, 0, 1, 3;
  ...
		

Crossrefs

Cf. A136158.

Programs

  • Magma
    function T(n,k) // T = A136157
      if k gt n-2 then return 2 + (-1)^(n+k);
      else return 0;
      end if;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 26 2023
    
  • Mathematica
    Table[PadLeft[{1,3},n,{0}],{n,0,20}]//Flatten (* Harvey P. Dale, Apr 04 2018 *)
  • SageMath
    def T(n,k): # T = A136157
        if k>n-2: return 2 + (-1)^(n+k)
        else: return 0
    flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 26 2023

Formula

From G. C. Greubel, Dec 26 2023: (Start)
T(n, k) = 3 if k = n, T(n, k) = 1 if k = n-1, otherwise T(n, k) = 0.
T(n, k) = 2 + (-1)^(n+k) for k >= n-1, otherwise T(n, k) = 0.
Sum_{k=0..n} T(n, k) = 4 - [n=0].
Sum_{k=0..n} (-1)^k*T(n, k) = (-2)^n + [n=0].
Sum_{k=0..floor(n/2)} T(n-k, k) = 2 + (-1)^n.
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (2 + (-1)^n)*(-1)^floor(n/2). (End)

Extensions

Offset changed by G. C. Greubel, Dec 26 2023

A136159 A Chebyshev polynomial triangle of the first kind defined by T(n+1,x) = 3x*T(n,x) - T(n-1,x).

Original entry on oeis.org

1, 1, 3, -1, 9, -4, 27, -15, 1, 81, -54, 7, 243, -189, 36, -1, 729, -648, 162, -10, 2187, -2187, 675, -66, 1, 6561, -7290, 2673, -360, 13, 19683, -24057, 10206, -1755, 105, -1, 59049, -78732, 37908, -7938, 675, -16
Offset: 0

Views

Author

Gary W. Adamson, Dec 16 2007

Keywords

Comments

Row sums (unsigned) give A003688, (starting 1, 1, 4, 13, 43, 142, 469, ...).

Examples

			First few rows of the polynomials are:
1;
x;
3x^2 - 1;
9x^3 - 4x;
27x^4 - 15x^2 + 1;
81x^5 - 54x^3 + 7x;
243x^6 - 189x^4 + 36x^2 - 1;
729x^7 - 648x^5 + 162x^3 - 10x;
...
		

Crossrefs

Programs

  • PARI
    P(n) = if (n==0, 1, if (n==1, x, 3*x*P(n-1) - P(n-2)));
    row(n) = select(x->x!=0, Vec(P(n))); \\ Michel Marcus, Apr 15 2018

Formula

T(0,x) = 1, T(1,x) = x, T(n+1,x) = 3x*T(n,x) - T(n-1,x).
G.f: (l - tx)/(1 - 3tx + t^2).
Given triangle A136158, shift down columns to allow for (1, 1, 2, 2, 3, 3, ...) terms in each row.

Extensions

Corrected and extended by Philippe Deléham, Sep 12 2009
Keyword tabf set by Michel Marcus, Apr 15 2018
Showing 1-10 of 10 results.