cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A001076 Denominators of continued fraction convergents to sqrt(5).

Original entry on oeis.org

0, 1, 4, 17, 72, 305, 1292, 5473, 23184, 98209, 416020, 1762289, 7465176, 31622993, 133957148, 567451585, 2403763488, 10182505537, 43133785636, 182717648081, 774004377960, 3278735159921, 13888945017644, 58834515230497, 249227005939632, 1055742538989025
Offset: 0

Views

Author

Keywords

Comments

a(2*n+1) with b(2*n+1) := A001077(2*n+1), n >= 0, give all (positive integer) solutions to Pell equation b^2 - 5*a^2 = -1, a(2*n) with b(2*n) := A001077(2*n), n >= 1, give all (positive integer) solutions to Pell equation b^2 - 5*a^2 = +1 (cf. Emerson reference).
Bisection: a(2*n+1) = T(2*n+1, sqrt(5))/sqrt(5) = A007805(n), n >= 0 and a(2*n) = 4*S(n-1,18), n >= 0, with T(n,x), resp. S(n,x), Chebyshev's polynomials of the first, resp. second kind. S(-1,x)=0. See A053120, resp. A049310. S(n,18)=A049660(n+1). - Wolfdieter Lang, Jan 10 2003
Apart from initial terms, this is the Pisot sequence E(4,17), a(n) = floor(a(n-1)^2/a(n-2) + 1/2).
This is also the Horadam sequence (0,1,1,4), having the recurrence relation a(n) = s*a(n-1) + r*a(n-2); for n > 1, where a(0) = 0, a(1) = 1, s = 4, r = 1. a(n) / a(n-1) converges to 5^1/2 + 2 as n approaches infinity. 5^(1/2) + 2 can also be written as (2 * Phi) + 1 and Phi^2 + Phi. - Ross La Haye, Aug 18 2003
Numerators of continued fraction [4, 4, 4, ...], where the convergents to [4, 4, 4, ...] = (4/1, 17/4, 72/17, ...). Let X = the 2 X 2 matrix [0, 1; 1, 4]; then X^n = [a(n-1), a(n); a(n), a(n+1)]; e.g., X^3 = [4, 17; 17, 72]. Let C = the limit of a(n)/a(n-1) = 2 + sqrt(5) = 4.236067977...; then C^n = a(n+1) + (1/C)*a(n), where (1/C) = 0.236067977... . Example: C^3 = 76.01315556..., = 72 + 17*(0.2360679...). - Gary W. Adamson, Dec 15 2007, corrected by Greg Dresden, Sep 16 2019, corrected by Alex Mark, Jul 21 2020
Sqrt(5) = 4/2 + 4/17 + 4/(17*305) + 4/(305*5473) + 4/(5473*98209) + ... . - Gary W. Adamson, Dec 15 2007
a(p) == 20^((p-1)/2) (mod p) for odd primes p. - Gary W. Adamson, Feb 22 2009
a(n) = A167808(3*n). - Reinhard Zumkeller, Nov 12 2009
For n >= 2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 4's along the main diagonal and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
Moreover, a(n) is the second binomial transform of (0,1,0,5,0,25,...) (see also A033887). This fact can be proved similarly like the proof of Paul Barry's remark in A033887 by using the following scaling identity for delta-Fibonacci numbers: y^n b(n;x/y) = Sum_{k=0..n} binomial(n,k) (y-1)^(n-k) b(k;x) and the fact that b(n;2) = (1-(-1)^n) 5^floor(n/2). - Roman Witula, Jul 12 2012
Binomial transform of 0, 1, 2, 8, 24, 80, 256, ... (A063727 with offset 1). - R. J. Mathar, Feb 05 2014
For n >= 1, a(n) equals the number of words of length n-1 on alphabet {0,1,...,4} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
With offset 1 is the INVERT transform of A006190: (1, 3, 10, 33, 109, 360, ...). - Gary W. Adamson, Jul 24 2015
From Rogério Serôdio, Mar 30 2018: (Start)
This is a divisibility sequence (i.e., if n|m then a(n)|a(m)).
gcd(a(n),a(n+k)) = a(gcd(n, k)) for all positive integers n and k. (End)
The initial 0 of this sequence is in contradiction with the fact that 0 is no valid denominator and according to all standard references, the first convergent of a continued fraction is p(0)/q(0) = b(0)/1 where b(0) is the first term of the continued fraction, given by the integer part of the number. One may artificially define q(-1) = 0 to have a recurrent relation q(n) = b(n)*q(n-1) + q(n-2), n >= 1, but then its index should be -1. - M. F. Hasler, Nov 01 2019
Number of 4-compositions of n restricted to odd parts (and allowed zeros); see Hopkins & Ouvry reference. - Brian Hopkins, Aug 17 2020
From Michael A. Allen, Feb 15 2023: (Start)
Also called the 4-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n+1) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 4 kinds of squares available. (End)
a(n) is the smallest nonnegative integer that is the sum of n, but no fewer, Fibonacci numbers including negative-index Fibonacci numbers (A039834), with that sum being a(n) = Sum_{i=0..n-1} A000045(3*i+1). a(n) is also the smallest nonnegative integer that is the sum of n, but no fewer, terms each of which is either a Fibonacci number or the negative of a Fibonacci number. (See A027941 for negatives disallowed.) - Mike Speciner, Oct 08 2023
From Enrique Navarrete, Dec 16 2023: (Start)
a(n) is the number of compositions of n when there are P(k) sorts of parts k, with k,n > = 1, where P(k) = A006190(k) is the k-th 3-metallonacci number (see example below).
In general, the number of compositions with k-metallonacci number of parts is counted by the (k+1)-st metallonacci sequence (note k=1 and k=2 are the Fibonacci and the Pell numbers, respectively). (End).
a(n) is the number of tilings of a 2 X n rectangle missing the top right 1 X 1 cell, using 1 X 1 squares, dominoes and right trominoes. Compare to A110679 which is the same problem but without the missing top right cell. - Greg Dresden and Yilin Zhu, Jul 10 2025

Examples

			1 2 9 38 161 (A001077)
-,-,-,--,---, ...
0 1 4 17 72 (A001076)
G.f. = x + 4*x^2 + 17*x^3 + 72*x^4 + 305*x^5 + 1292*x^6 + 5473*x^7 + 23184*x^8 + ...
From _Enrique Navarrete_, Dec 16 2023: (Start)
From the comment on compositions with 3-metallonacci sorts of parts, A006190(k), there are A006190(1)=1 type of 1, A006190(2)=3 types of 2, A006190(3)=10 types of 3, A006190(4)=33 types of 4, A006190(5)=109 types of 5 and A006190(6)=360 types of 6. The following table gives the number of compositions of n=6:
Composition, number of such compositions, number of compositions of this type:
 6,              1,      360;
 5+1,            2,      218;
 4+2,            2,      198;
 3+3,            1,      100;
 4+1+1,          3,       99;
 3+2+1,          6,      180;
 2+2+2,          1,       27;
 3+1+1+1,        4,       40;
 2+2+1+1,        6,       54;
 2+1+1+1+1,      5,       15;
 1+1+1+1+1+1,    1,        1;
for a total of a(6)=1292 compositions of n=6. (End)
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 23.
  • S. Koshkin, Non-classical linear divisibility sequences ..., Fib. Q., 57 (No. 1, 2019), 68-80. See Table 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • V. Thébault, Les Récréations Mathématiques. Gauthier-Villars, Paris, 1952, p. 282.

Crossrefs

Row n=4 of A073133, A172236 and A352361.
Cf. A000045, A001077, A015448, A175183 (Pisano periods).
Partial sums of A033887. First differences of A049652. Bisection of A059973.
Third column of array A028412.

Programs

  • GAP
    a:=[0,1];; for n in [3..30] do a[n]:=4*a[n-1]+a[n-2]; od; a; # Muniru A Asiru, Mar 31 2018
    
  • Magma
    I:=[0,1]; [n le 2 select I[n] else 4*Self(n-1) + Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 24 2018
    
  • Maple
    A001076:=-1/(-1+4*z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Join[{0}, Denominator[Convergents[Sqrt[5], 30]]] (* Harvey P. Dale, Dec 10 2011 *)
    a[ n_] := Fibonacci[3*n] / 2; (* Michael Somos, Feb 23 2014 *)
    a[ n_] := ((2 + Sqrt[5])^n - (2 - Sqrt[5])^n) /(2 Sqrt[5]) // Simplify; (* Michael Somos, Feb 23 2014 *)
    LinearRecurrence[{4, 1}, {0, 1}, 26] (* Jean-François Alcover, Sep 23 2017 *)
    a[ n_] := Fibonacci[n, 4]; (* Michael Somos, Nov 02 2021 *)
  • Maxima
    a(n):=sum(4^(n-1-2*k)*binomial(n-k-1,n-2*k-1),k,0,floor((n)/2));/* Vladimir Kruchinin, Oct 02 2022 */
  • MuPAD
    numlib::fibonacci(3*n)/2 $ n = 0..30; // Zerinvary Lajos, May 09 2008
    
  • PARI
    {a(n) = fibonacci(3*n) / 2}; /* Michael Somos, Aug 11 2009 */
    
  • PARI
    {a(n) = imag( (2 + quadgen(20))^n )}; /* Michael Somos, Feb 23 2014 */
    
  • PARI
    {a(n) = polchebyshev(n-1, 2, 2*I)/I^(n-1)}; /* Michael Somos, Nov 02 2021 */
    
  • Sage
    [lucas_number1(n,4,-1) for n in range(23)] # Zerinvary Lajos, Apr 23 2009
    
  • Sage
    [fibonacci(3*n)/2 for n in range(23)] # Zerinvary Lajos, May 15 2009
    

Formula

a(n) = 4*a(n-1) + a(n-2), n > 1. a(0)=0, a(1)=1.
G.f.: x/(1 - 4*x - x^2).
a(n) = ((2+sqrt(5))^n - (2-sqrt(5))^n)/(2*sqrt(5)).
a(n) = A014445(n)/2 = F(3n)/2.
a(n) = ((-i)^(n-1))*S(n-1, 4*i), with i^2 = -1 and S(n, x) := U(n, x/2) Chebyshev's polynomials of the second kind. See A049310. S(-1, x) = 0.
a(n) = Sum_{i=0..n} Sum_{j=0..n} Fibonacci(i+j)*n!/(i!j!(n-i-j)!)/2. - Paul Barry, Feb 06 2004
E.g.f.: exp(2*x)*sinh(sqrt(5)*x)/sqrt(5). - Vladeta Jovovic, Sep 01 2004
a(n) = F(1) + F(4) + F(7) + ... + F(3n-2), for n > 0.
Conjecture: 2a(n+1) = a(n+2) - A001077(n+1). - Creighton Dement, Nov 28 2004
a(n) = Sum_{k=0..n} Sum_{j=0..n} C(n, j)*C(j, k)*F(j)/2. - Paul Barry, Feb 14 2005
a(n) = A048876(n) - A048875(n). - Creighton Dement, Mar 19 2005
Let M = {{0, 1}, {1, 4}}, v[1] = {0, 1}, v[n] = M.v[n - 1]; then a(n) = v[n][[1]]. - Roger L. Bagula, May 29 2005
a(n) = F(n, 4), the n-th Fibonacci polynomial evaluated at x=4. - T. D. Noe, Jan 19 2006
[A015448(n), a(n)] = [1,4; 1,3]^n * [1,0]. - Gary W. Adamson, Mar 21 2008
a(n) = (Sum_{k=0..n} Fibonacci(3*k-2)) + 1. - Gary Detlefs, Dec 26 2010
a(n) = (3*(-1)^n*F(n) + 5*F(n)^3)/2, n >= 0. See the general D. Jennings formula given in a comment on triangle A111125, where also the reference is given. Here the second (k=1) row [3,1] applies. - Wolfdieter Lang, Sep 01 2012
Sum_{k>=1} (-1)^(k-1)/(a(k)*a(k+1)) = (Sum_{k>=1} (-1)^(k-1)/(F_k*F_(k+1)))^3 = phi^(-3), where F_n is the n-th Fibonacci numbers (A000045) and phi is golden ratio (A001622). - Vladimir Shevelev, Feb 23 2013
G.f.: Q(0)*x/(2-4*x), where Q(k) = 1 + 1/(1 - x*(5*k-4)/(x*(5*k+1) - 2/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Oct 11 2013
a(-n) = -(-1)^n * a(n). - Michael Somos, Feb 23 2014
The o.g.f. A(x) = x/(1 - 4*x - x^2) satisfies A(x) + A(-x) + 8*A(x)*A(-x) = 0 or equivalently (1 + 8*A(x))*(1 + 8*A(-x)) = 1. The o.g.f. for A049660 equals -A(sqrt(x))*A(-sqrt(x)). - Peter Bala, Apr 02 2015
From Rogério Serôdio, Mar 30 2018: (Start)
Some properties:
(1) a(n)*a(n+1) = 4*Sum_{k=1..n} a(k)^2;
(2) a(n)^2 + a(n+1)^2 = a(2*n+1);
(3) a(n)^2 - a(n-2)^2 = 4*a(n-1)*(a(n) + a(n-2));
(4) a(m*(p+1)) = a(m*p)*a(m+1) + a(m*p-1)*a(m);
(5) a(n-k)*a(n+k) = a(n)^2 + (-1)^(n+k+1)*a(k)^2;
(6) a(n-1)*a(n+1) = a(n)^2 + (-1)^n (particular case of (5)!);
(7) a(2*n) = 2*a(n)*(2*a(n) + a(n-1));
(8) 3*Sum_{k=2..n+1} a(k)*a(k-1) is equal to a(n+1)^2 if n odd, and is equal to a(n+1)^2 - 1 if n is even;
(9) a(n) - a(n-2*k+1) = alpha(k)*a(n-2*k+1) + a(n-4*k+2), where alpha(k) = (2+sqrt(5))^(2*k-1) + (2-sqrt(5))^(2*k-1);
(10) 31|Sum_{k=n..n+9} a(k), for all positive n. (End)
O.g.f.: x*exp(Sum_{n >= 1} Lucas(3*n)*x^n/n) = x + 4*x^2 + 17*x^3 + .... - Peter Bala, Oct 11 2019
a(n) = Sum_{k=0..floor(n/2)} 4^(n-2*k-1)*C(n-k-1,n-2*k-1). - Vladimir Kruchinin, Oct 02 2022
a(n) = i^(n-1)*S(n-1, -4*i), with i = sqrt(-1), and the Chebyshev S-polynomials (see A049310) with S(n, -1) = 0. - Gary Detlefs and Wolfdieter Lang, Mar 06 2023
G.f.: x/(1 - 4*x - x^2) = Sum_{n >= 0} x^(n+1) * ( Product_{k = 1..n} (m*k + 4 - m + x)/(1 + m*k*x) ) for arbitrary m (a telescoping series). - Peter Bala, May 08 2024
a(n) = 4^(n-1)*hypergeom([(1-n)/2, 1-n/2], [1-n], -1/4) for n > 0. - Peter Luschny, Mar 30 2025
a(n) = a(n-1) + A110679(n-1) + A110679(n-2) = a(n-1) + Fibonacci(3*n-2). - Greg Dresden and Yilin Zhu, Jul 10 2025

A001077 Numerators of continued fraction convergents to sqrt(5).

Original entry on oeis.org

1, 2, 9, 38, 161, 682, 2889, 12238, 51841, 219602, 930249, 3940598, 16692641, 70711162, 299537289, 1268860318, 5374978561, 22768774562, 96450076809, 408569081798, 1730726404001, 7331474697802, 31056625195209
Offset: 0

Views

Author

Keywords

Comments

a(2*n+1) with b(2*n+1) := A001076(2*n+1), n >= 0, give all (positive integer) solutions to Pell equation a^2 - 5*b^2 = -1.
a(2*n) with b(2*n) := A001076(2*n), n >= 1, give all (positive integer) solutions to Pell equation a^2 - 5*b^2 = +1 (see Emerson reference).
Bisection: a(2*n) = T(n,9) = A023039(n), n >= 0 and a(2*n+1) = 2*S(2*n, 2*sqrt(5)) = A075796(n+1), n >= 0, with T(n,x), resp. S(n,x), Chebyshev's polynomials of the first, resp. second kind. See A053120, resp. A049310.
From Greg Dresden, May 21 2023: (Start)
For n >= 2, 8*a(n) is the number of ways to tile this T-shaped figure of length n-1 with four colors of squares and one color of domino; shown here is the figure of length 5 (corresponding to n=6), and it has 8*a(6) = 23112 different tilings.
_
|| _
|||_|||
|_|
(End)

Examples

			1  2  9  38  161  (A001077)
-, -, -, --, ---, ...
0  1  4  17   72  (A001076)
1 + 2*x + 9*x^2 + 38*x^3 + 161*x^4 + 682*x^5 + 2889*x^6 + 12238*x^7 + ... - _Michael Somos_, Aug 11 2009
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • V. Thébault, Les Récréations Mathématiques, Gauthier-Villars, Paris, 1952, p. 282.

Crossrefs

Programs

  • Magma
    I:=[1, 2]; [n le 2 select I[n] else 4*Self(n-1) + Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 19 2017
  • Maple
    A001077:=(-1+2*z)/(-1+4*z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation
    with(combinat): a:=n->fibonacci(n+1, 4)-2*fibonacci(n, 4): seq(a(n), n=0..30); # Zerinvary Lajos, Apr 04 2008
  • Mathematica
    LinearRecurrence[{4, 1}, {1, 2}, 30]
    Join[{1},Numerator[Convergents[Sqrt[5],30]]] (* Harvey P. Dale, Mar 23 2016 *)
    CoefficientList[Series[(1-2*x)/(1-4*x-x^2), {x, 0, 30}], x] (* G. C. Greubel, Dec 19 2017 *)
    LucasL[3*Range[0,30]]/2 (* Rigoberto Florez, Apr 03 2019 *)
    a[ n_] := LucasL[n, 4]/2; (* Michael Somos, Nov 02 2021 *)
  • PARI
    {a(n) = fibonacci(3*n) / 2 + fibonacci(3*n - 1)}; /* Michael Somos, Aug 11 2009 */
    
  • PARI
    a(n)=if(n<2,n+1,my(t=4);for(i=1,n-2,t=4+1/t);numerator(2+1/t)) \\ Charles R Greathouse IV, Dec 05 2011
    
  • PARI
    x='x+O('x^30); Vec((1-2*x)/(1-4*x-x^2)) \\ G. C. Greubel, Dec 19 2017
    
  • Sage
    [lucas_number2(n,4,-1)/2 for n in range(0, 30)] # Zerinvary Lajos, May 14 2009
    

Formula

G.f.: (1-2*x)/(1-4*x-x^2).
a(n) = 4*a(n-1) + a(n-2), a(0)=1, a(1)=2.
a(n) = ((2 + sqrt(5))^n + (2 - sqrt(5))^n)/2.
a(n) = A014448(n)/2.
Limit_{n->infinity} a(n)/a(n-1) = phi^3 = 2 + sqrt(5). - Gregory V. Richardson, Oct 13 2002
a(n) = ((-i)^n)*T(n, 2*i), with T(n, x) Chebyshev's polynomials of the first kind A053120 and i^2 = -1.
Binomial transform of A084057. - Paul Barry, May 10 2003
E.g.f.: exp(2x)cosh(sqrt(5)x). - Paul Barry, May 10 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2k)*5^k*2^(n-2k). - Paul Barry, Nov 15 2003
a(n) = 4*a(n-1) + a(n-2) when n > 2; a(1) = 1, a(2) = 2. - Alex Vinokur (alexvn(AT)barak-online.net), Oct 25 2004
a(n) = A001076(n+1) - 2*A001076(n) = A097924(n) - A015448(n+1); a(n+1) = A097924(n) + 2*A001076(n) = A097924(n) + 2(A048876(n) - A048875(n)). - Creighton Dement, Mar 19 2005
a(n) = F(3*n)/2 + F(3*n-1) where F() = Fibonacci numbers A000045. - Gerald McGarvey, Apr 28 2007
a(n) = A000032(3*n)/2.
For n >= 1: a(n) = (1/2)*Fibonacci(6*n)/Fibonacci(3*n) and a(n) = integer part of (2 + sqrt(5))^n. - Artur Jasinski, Nov 28 2011
a(n) = Sum_{k=0..n} A201730(n,k)*4^k. - Philippe Deléham, Dec 06 2011
a(n) = A001076(n) + A015448(n). - R. J. Mathar, Jul 06 2012
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(5*k-4)/(x*(5*k+1) - 2/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 27 2013
a(n) is the (1,1)-entry of the matrix W^n with W=[2, sqrt(5); sqrt(5), 2]. - Carmine Suriano, Mar 21 2014
From Rigoberto Florez, Apr 03 2019: (Start)
a(n) = A099919(n) + A049651(n) if n > 0.
a(n) = 1 + Sum_{k=0..n-1} L(3*k + 1) if n >= 0, L(n) = n-th Lucas number (A000032). (End)
From Christopher Hohl, Aug 22 2021: (Start)
For n >= 2, a(2n-1) = A079962(6n-9) + A079962(6n-3).
For n >= 1, a(2n) = sqrt(20*A079962(6n-3)^2 + 1). (End)
a(n) = Sum_{k=0..n-2} A168561(n-2,k)*4^k + 2 * Sum_{k=0..n-1} A168561(n-1,k)*4^k, n>0. - R. J. Mathar, Feb 14 2024
a(n) = 4^n*Sum_{k=0..n} A374439(n, k)*(-1/4)^k. - Peter Luschny, Jul 26 2024
From Peter Bala, Jul 08 2025: (Start)
The following series telescope:
Sum_{n >= 1} 1/(a(n) + 5*(-1)^(n+1)/a(n)) = 3/8, since 1/(a(n) + 5*(-1)^(n+1)/a(n)) = b(n) - b(n+1), where b(n) = (1/4) * (a(n) + a(n-1)) / (a(n)*a(n-1)).
Sum_{n >= 1} (-1)^(n+1)/(a(n) + 5*(-1)^(n+1)/a(n)) = 1/8, since 1/(a(n) + 5*(-1)^(n+1)/a(n)) = c(n) + c(n+1), where c(n) = (1/4) * (a(n) - a(n-1)) / (a(n)*a(n-1)). (End)

Extensions

Chebyshev comments from Wolfdieter Lang, Jan 10 2003

A374439 Triangle read by rows: the coefficients of the Lucas-Fibonacci polynomials. T(n, k) = T(n - 1, k) + T(n - 2, k - 2) with initial values T(n, k) = k + 1 for k < 2.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 2, 3, 4, 1, 1, 2, 4, 6, 3, 2, 1, 2, 5, 8, 6, 6, 1, 1, 2, 6, 10, 10, 12, 4, 2, 1, 2, 7, 12, 15, 20, 10, 8, 1, 1, 2, 8, 14, 21, 30, 20, 20, 5, 2, 1, 2, 9, 16, 28, 42, 35, 40, 15, 10, 1, 1, 2, 10, 18, 36, 56, 56, 70, 35, 30, 6, 2
Offset: 0

Views

Author

Peter Luschny, Jul 22 2024

Keywords

Comments

There are several versions of Lucas and Fibonacci polynomials in this database. Our naming follows the convention of calling polynomials after the values of the polynomials at x = 1. This assumes a regular sequence of polynomials, that is, a sequence of polynomials where degree(p(n)) = n. This view makes the coefficients of the polynomials (the terms of a row) a refinement of the values at the unity.
A remarkable property of the polynomials under consideration is that they are dual in this respect. This means they give the Lucas numbers at x = 1 and the Fibonacci numbers at x = -1 (except for the sign). See the example section.
The Pell numbers and the dual Pell numbers are also values of the polynomials, at the points x = -1/2 and x = 1/2 (up to the normalization factor 2^n). This suggests a harmonized terminology: To call 2^n*P(n, -1/2) = 1, 0, 1, 2, 5, ... the Pell numbers (A000129) and 2^n*P(n, 1/2) = 1, 4, 9, 22, ... the dual Pell numbers (A048654).
Based on our naming convention one could call A162515 (without the prepended 0) the Fibonacci polynomials. In the definition above only the initial values would change to: T(n, k) = k + 1 for k < 1. To extend this line of thought we introduce A374438 as the third triangle of this family.
The triangle is closely related to the qStirling2 numbers at q = -1. For the definition of these numbers see A333143. This relates the triangle to A065941 and A103631.

Examples

			Triangle starts:
  [ 0] [1]
  [ 1] [1, 2]
  [ 2] [1, 2, 1]
  [ 3] [1, 2, 2,  2]
  [ 4] [1, 2, 3,  4,  1]
  [ 5] [1, 2, 4,  6,  3,  2]
  [ 6] [1, 2, 5,  8,  6,  6,  1]
  [ 7] [1, 2, 6, 10, 10, 12,  4,  2]
  [ 8] [1, 2, 7, 12, 15, 20, 10,  8,  1]
  [ 9] [1, 2, 8, 14, 21, 30, 20, 20,  5,  2]
  [10] [1, 2, 9, 16, 28, 42, 35, 40, 15, 10, 1]
.
Table of interpolated sequences:
  |  n | A039834 & A000045 | A000032 |   A000129   |   A048654  |
  |  n |     -P(n,-1)      | P(n,1)  |2^n*P(n,-1/2)|2^n*P(n,1/2)|
  |    |     Fibonacci     |  Lucas  |     Pell    |    Pell*   |
  |  0 |        -1         |     1   |       1     |       1    |
  |  1 |         1         |     3   |       0     |       4    |
  |  2 |         0         |     4   |       1     |       9    |
  |  3 |         1         |     7   |       2     |      22    |
  |  4 |         1         |    11   |       5     |      53    |
  |  5 |         2         |    18   |      12     |     128    |
  |  6 |         3         |    29   |      29     |     309    |
  |  7 |         5         |    47   |      70     |     746    |
  |  8 |         8         |    76   |     169     |    1801    |
  |  9 |        13         |   123   |     408     |    4348    |
		

Crossrefs

Triangles related to Lucas polynomials: A034807, A114525, A122075, A061896, A352362.
Triangles related to Fibonacci polynomials: A162515, A053119, A168561, A049310, A374441.
Sums include: A000204 (Lucas numbers, row), A000045 & A212804 (even sums, Fibonacci numbers), A006355 (odd sums), A039834 (alternating sign row).
Type m^n*P(n, 1/m): A000129 & A048654 (Pell, m=2), A108300 & A003688 (m=3), A001077 & A048875 (m=4).
Adding and subtracting the values in a row of the table (plus halving the values obtained in this way): A022087, A055389, A118658, A052542, A163271, A371596, A324969, A212804, A077985, A069306, A215928.
Columns include: A040000 (k=1), A000027 (k=2), A005843 (k=3), A000217 (k=4), A002378 (k=5).
Diagonals include: A000034 (k=n), A029578 (k=n-1), abs(A131259) (k=n-2).
Cf. A029578 (subdiagonal), A124038 (row reversed triangle, signed).

Programs

  • Magma
    function T(n,k) // T = A374439
      if k lt 0 or k gt n then return 0;
      elif k le 1 then return k+1;
      else return T(n-1,k) + T(n-2,k-2);
      end if;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 23 2025
    
  • Maple
    A374439 := (n, k) -> ifelse(k::odd, 2, 1)*binomial(n - irem(k, 2) - iquo(k, 2), iquo(k, 2)):
    # Alternative, using the function qStirling2 from A333143:
    T := (n, k) -> 2^irem(k, 2)*qStirling2(n, k, -1):
    seq(seq(T(n, k), k = 0..n), n = 0..10);
  • Mathematica
    A374439[n_, k_] := (# + 1)*Binomial[n - (k + #)/2, (k - #)/2] & [Mod[k, 2]];
    Table[A374439[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Paolo Xausa, Jul 24 2024 *)
  • Python
    from functools import cache
    @cache
    def T(n: int, k: int) -> int:
        if k > n: return 0
        if k < 2: return k + 1
        return T(n - 1, k) + T(n - 2, k - 2)
    
  • Python
    from math import comb as binomial
    def T(n: int, k: int) -> int:
        o = k & 1
        return binomial(n - o - (k - o) // 2, (k - o) // 2) << o
    
  • Python
    def P(n, x):
        if n < 0: return P(n, x)
        return sum(T(n, k)*x**k for k in range(n + 1))
    def sgn(x: int) -> int: return (x > 0) - (x < 0)
    # Table of interpolated sequences
    print("|  n | A039834 & A000045 | A000032 |   A000129   |   A048654  |")
    print("|  n |     -P(n,-1)      | P(n,1)  |2^n*P(n,-1/2)|2^n*P(n,1/2)|")
    print("|    |     Fibonacci     |  Lucas  |     Pell    |    Pell*   |")
    f = "| {0:2d} | {1:9d}         |  {2:4d}   |   {3:5d}     |    {4:4d}    |"
    for n in range(10): print(f.format(n, -P(n, -1), P(n, 1), int(2**n*P(n, -1/2)), int(2**n*P(n, 1/2))))
    
  • SageMath
    from sage.combinat.q_analogues import q_stirling_number2
    def A374439(n,k): return (-1)^((k+1)//2)*2^(k%2)*q_stirling_number2(n+1, k+1, -1)
    print(flatten([[A374439(n, k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 23 2025

Formula

T(n, k) = 2^k' * binomial(n - k' - (k - k') / 2, (k - k') / 2) where k' = 1 if k is odd and otherwise 0.
T(n, k) = (1 + (k mod 2))*qStirling2(n, k, -1), see A333143.
2^n*P(n, -1/2) = A000129(n - 1), Pell numbers, P(-1) = 1.
2^n*P(n, 1/2) = A048654(n), dual Pell numbers.
T(2*n, n) = (1/2)*(-1)^n*( (1+(-1)^n)*A005809(n/2) - 2*(1-(-1)^n)*A045721((n-1)/2) ). - G. C. Greubel, Jan 23 2025

A097924 a(n) = 4*a(n-1) + a(n-2), n>=2, a(0) = 2, a(1) = 7.

Original entry on oeis.org

2, 7, 30, 127, 538, 2279, 9654, 40895, 173234, 733831, 3108558, 13168063, 55780810, 236291303, 1000946022, 4240075391, 17961247586, 76085065735, 322301510526, 1365291107839, 5783465941882, 24499154875367, 103780085443350, 439619496648767, 1862258072038418
Offset: 0

Views

Author

Creighton Dement, Sep 04 2004; corrected Sep 16 2004

Keywords

Comments

Previous name was: Sequence relates numerators and denominators in the continued fraction convergents to sqrt(5).
Floretion Algebra Multiplication Program, FAMP Code: 2lesforcycseq[ ( - 'i + 'j - i' + j' - 'kk' - 'ik' - 'jk' - 'ki' - 'kj' )*( .5'i + .5i' ) ], 2vesforcycseq = A000004.

Examples

			G.f. = 2 + 7*x + 30*x^2 + 127*x^3 + 538*x^4 + 2279*x^5 + 9654*x^6 + 40895*x^7 + ...
		

Crossrefs

Programs

  • Magma
    I:=[2,7]; [n le 2 select I[n] else 4*Self(n-1) + Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 20 2017
  • Mathematica
    a[n_] := Expand[((2Sqrt[5] + 3)*(2 + Sqrt[5])^n + (2Sqrt[5] - 3)*(2 - Sqrt[5])^n)/(2Sqrt[5])]; Table[ a[n], {n, 0, 20}] (* Robert G. Wilson v, Sep 17 2004 *)
    a[ n_] := (3 I ChebyshevT[ n + 1, -2 I] + 4 ChebyshevT[ n, -2 I]) I^n / 5; (* Michael Somos, Feb 23 2014 *)
    a[ n_] := If[ n < 0, SeriesCoefficient[ (2 + 7 x) / (1 + 4 x - x^2), {x, 0, -n}], SeriesCoefficient[ (2 - x) / (1 - 4 x - x^2), {x, 0, n}]]; (* Michael Somos, Feb 23 2014 *)
    LinearRecurrence[{4,1}, {2,7}, 50] (* G. C. Greubel, Dec 20 2017 *)
  • PARI
    {a(n) = ( 3*I*polchebyshev( n+1, 1, -2*I) + 4*polchebyshev( n, 1, -2*I)) * I^n / 5}; \\ Michael Somos, Feb 23 2014
    
  • PARI
    {a(n) = if( n<0, polcoeff( (2 + 7*x) / (1 + 4*x - x^2) + x * O(x^-n), -n), polcoeff( (2 - x) / (1 - 4*x - x^2) + x * O(x^n), n))}; \\ Michael Somos, Feb 23 2014
    

Formula

a(n) = A001077(n+1) - 2*A001076(n).
A048875(n) + A001077(n+1)/2 = a(n)/2 + A048876(n).
a(n) = ((2*sqrt(5)+3)*(2+sqrt(5))^n + (2*sqrt(5)-3)*(2-sqrt(5))^n)/(2*sqrt(5)).
a(n+1) = A001077(n+1) + A015448(n+2) - Creighton Dement, Mar 08 2005
From Philippe Deléham, Nov 20 2008: (Start)
a(n) = 4*a(n-1) + a(n-2) for n>=2, a(0)=2, a(1)=7.
G.f.: (2-x)/(1-4*x-x^2). (End)
G.f.: G(0)*(2-x)/2, where G(k) = 1 + 1/(1 - x*(8*k + 4 +x)/(x*(8*k + 8 +x) + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Feb 15 2014
a(-1 - n) = -(-1)^n * A048875(n). - Michael Somos, Feb 23 2014
E.g.f.: exp(2*x)*(10*cosh(sqrt(5)*x) + 3*sqrt(5)*sinh(sqrt(5)*x))/5. - Stefano Spezia, Aug 21 2025

Extensions

Edited, corrected and extended by Robert G. Wilson v, Sep 17 2004
Better name (using formula from Philippe Deléham) from Joerg Arndt, Feb 16 2014

A133632 a(1)=1, a(n) = (p-1)*a(n-1), if n is even, otherwise a(n) = p*a(n-2), where p = 5.

Original entry on oeis.org

1, 4, 5, 20, 25, 100, 125, 500, 625, 2500, 3125, 12500, 15625, 62500, 78125, 312500, 390625, 1562500, 1953125, 7812500, 9765625, 39062500, 48828125, 195312500, 244140625, 976562500, 1220703125, 4882812500, 6103515625, 24414062500
Offset: 1

Views

Author

Hieronymus Fischer, Sep 19 2007

Keywords

Comments

Binomial transform = A134418: (1, 5, 14, 48, 152, 496, 1600, ...). Double binomial transform = A048875: (1, 6, 25, 106, 449, 1902, ...) - Gary W. Adamson, Oct 24 2007

Crossrefs

For the partial sums see A133629.
Sequences with similar recurrence rules: A016116(p=2), A038754(p=3), A084221(p=4).
Partial sums for other p: A027383(p=2), A087503(p=3), A133628(p=4).
Other related sequences: A132666, A132667, A132668, A132669.

Programs

  • Mathematica
    RecurrenceTable[{a[1]==1,a[2]==4,a[n]==If[EvenQ[n],4a[n-1],5a[n-2]]},a,{n,30}] (* Harvey P. Dale, Jan 14 2013 *)

Formula

The following formulas are given for a general natural parameter p > 1 (p = 5 for this sequence).
G.f.: g(x) = x(1+(p-1)x)/(1-px^2).
a(n) = p^floor((n-1)/2)*(p+(p-2)*(-1)^n)/2.
a(n) = A133629(n) - A133629(n-1) for n > 1.
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011

A134418 Row sums of triangle A134417.

Original entry on oeis.org

1, 5, 14, 48, 152, 496, 1600, 5184, 16768, 54272, 175616, 568320, 1839104, 5951488
Offset: 1

Views

Author

Gary W. Adamson, Oct 24 2007

Keywords

Examples

			a(4) = 48 = sum of row 4 terms of triangle A134417: (1 + 12 + 15 + 20).
a(4) = 48 = (1, 3, 3, 1) dot (1, 4, 5, 20), given A133632 = (1, 4, 5, 20, 25, 100, ...).
a(3) = 14 = (1, -2, 1) dot (1, 6, 25), = (1, -12, 25), where A048875 = (1, 6, 25, 106, 449, 1902, ...).
		

Crossrefs

Formula

Row sums of triangle A134417. Binomial transform of A133632. Inverse binomial transform of A048875.
Inverse binomial transform of A048875: (l, 6, 25, 106, 449, ...). - Gary W. Adamson, Nov 23 2007
G.f.: (1+3*x)/(1-2*x-4*x^2). - Vladimir Kruchinin, May 06 2011

A328695 Rectangular array R read by descending antidiagonals: divide to each even term of the Wythoff array (A035513) by 2, and delete all others.

Original entry on oeis.org

1, 4, 2, 17, 9, 3, 72, 38, 5, 12, 305, 161, 8, 51, 6, 1292, 682, 13, 216, 10, 7, 5473, 2889, 21, 915, 16, 30, 14, 23184, 12238, 34, 3876, 26, 127, 59, 25, 98209, 51841, 55, 16419, 42, 538, 250, 106, 11, 416020, 219602, 89, 69552, 68, 2279, 1059, 449, 18, 33
Offset: 1

Views

Author

Clark Kimberling, Oct 26 2019

Keywords

Comments

Every positive integer occurs exactly once in R, and every row of R is a linear recurrence sequence. The appearance of a sequence s(r) below means that corresponding row of R is the same as s(r) except possibly for one or more initial terms of s(r).
Row 1 of R: A001076
Row 2 of R: A001077
Row 3 of R: A000045
Row 4 of R: A115179
Row 5 of R: A006355
Row 6 of R: A097924
Row 8 of R: A048875
Row 9 of R: A000032

Examples

			Row 1 of the Wythoff array is (1,2,3,5,8,13,21,34,55,89,144,...), so that row 1 of R is (1,4,17,72,...).
_______________
Northwest corner of R:
   1   4   17   72  305  1292   5473
   2   9   38  161  682  2889  12238
   3   5    8   13   21    34     55
  12  51  216  915 3876 16419  69552
   6  10   16   26   42    68    110
   7  30  127  538 2279  9654  40895
		

Crossrefs

Programs

  • Mathematica
    w[n_, k_] := Fibonacci[k + 1] Floor[n*GoldenRatio] + (n - 1) Fibonacci[k];
    Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten;
    q[n_, k_] := If[Mod[w[n, k], 2] == 0, w[n, k]/2, 0];
    t[n_] := Union[Table[q[n, k], {k, 1, 50}]];
    u[n_] := If[First[t[n]] == 0, Rest[t[n]], t[n]]
    Table[u[n], {n, 1, 10}] (* A328695 array *)
    v[n_, k_] := u[n][[k]];
    Table[v[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* A328695 sequence *)

A182001 Riordan array ((2*x+1)/(1-x-x^2), x/(1-x-x^2)).

Original entry on oeis.org

1, 3, 1, 4, 4, 1, 7, 9, 5, 1, 11, 20, 15, 6, 1, 18, 40, 40, 22, 7, 1, 29, 78, 95, 68, 30, 8, 1, 47, 147, 213, 185, 105, 39, 9, 1, 76, 272, 455, 466, 320, 152, 49, 10, 1, 123, 495, 940, 1106, 891, 511, 210, 60, 11, 1, 199, 890, 1890, 2512, 2317, 1554, 770, 280, 72, 12, 1
Offset: 0

Views

Author

Philippe Deléham, Apr 05 2012

Keywords

Comments

Subtriangle of the triangle given by (0, 3, -5/3, -1/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, -2/3, 2/3, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Antidiagonal sums are A001045(n+2).

Examples

			Triangle begins :
    1;
    3,   1;
    4,   4,    1;
    7,   9,    5,    1;
   11,  20,   15,    6,    1;
   18,  40,   40,   22,    7,    1;
   29,  78,   95,   68,   30,    8,   1;
   47, 147,  213,  185,  105,   39,   9,   1;
   76, 272,  455,  466,  320,  152,  49,  10, 1;
  123, 495,  940, 1106,  891,  511, 210,  60, 11,  1;
  199, 890, 1890, 2512, 2317, 1554, 770, 280, 72, 12, 1;
(0, 3, -5/3, -1/3, 0, 0, ...) DELTA (1, 0, -2/3, 2/3, 0, 0, ...) begins:
  1;
  0,  1;
  0,  3,  1;
  0,  4,  4,  1;
  0,  7,  9,  5,  1;
  0, 11, 20, 15,  6, 1;
  0, 18, 40, 40, 22, 7, 1;
		

Crossrefs

Cf. Columns : A000032, A023607, A152881

Programs

  • Magma
    function T(n,k)
      if k lt 0 or k gt n then return 0;
      elif k eq n then return 1;
      elif k eq 0 then return Lucas(n+1);
      else return T(n-1,k) + T(n-1,k-1) + T(n-2,k);
      end if; return T; end function;
    [T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 18 2020
  • Maple
    with(combinat);
    T:= proc(n, k) option remember;
          if k<0 or k>n then 0
        elif k=n then 1
        elif k=0 then fibonacci(n+2) + fibonacci(n)
        else T(n-1,k) + T(n-1,k-1) + T(n-2,k)
          fi; end:
    seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Feb 18 2020
  • Mathematica
    With[{m = 10}, CoefficientList[CoefficientList[Series[(1+2*x)/(1-x-y*x-x^2), {x, 0, m}, {y, 0, m}], x], y]] // Flatten (* Georg Fischer, Feb 18 2020 *)
    T[n_, k_]:= T[n, k]= If[k<0||k>n, 0, If[k==n, 1, If[k==0, LucasL[n+1], T[n-1, k] + T[n-1, k-1] + T[n-2, k] ]]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 18 2020 *)

Formula

G.f.: (1+2*x)/(1-x-y*x-x^2).
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k), T(0,0) = T(1,1) = 1, T(1,0) = 3, T(n,k) = 0 if k<0 or if k>n.
Sum_{k=0..nn} T(n,k)*x^k = A000034(n), A000032(n+1), A048654(n), A108300(n), A048875(n) for x = -1, 0, 1, 2, 3 respectively.

Extensions

a(29) corrected by and a(55)-a(65) from Georg Fischer, Feb 18 2020

A102129 Expansion of (1 - x)*(1 + 2*x) / ((1 + x)*(1 - 4*x - x^2)).

Original entry on oeis.org

1, 4, 15, 66, 277, 1176, 4979, 21094, 89353, 378508, 1603383, 6792042, 28771549, 121878240, 516284507, 2187016270, 9264349585, 39244414612, 166242008031, 704212446738, 2983091794981, 12636579626664, 53529410301635, 226754220833206, 960546293634457
Offset: 0

Views

Author

Creighton Dement, Mar 15 2005

Keywords

Comments

A floretion-generated, Pellian related sequence.
Floretion Algebra Multiplication Program, FAMP Code: 2ibaseiforseq[A*B] with A = - .5'j + .5'k - .5j' + .5k' - 'ii' - .5'ij' - .5'ik' - .5'ji' - .5'ki' B = - .5'ii' + .5'jj' + .5'kk' + .5e, 1vesforseq(n) = (-1)^n, 2basekforseq[A*B] = A048875, ForType: 1A
Sequence results from a force transform of the periodic sequence with initial period (1, -1).

Crossrefs

Cf. A048875.

Programs

  • Mathematica
    CoefficientList[ Series[((-1 + x)(2x + 1))/((1 + x)(x^2 + 4x - 1)), {x, 0, 22}], x] (* Robert G. Wilson v, Mar 16 2005 *)
  • PARI
    Vec((1 - x)*(1 + 2*x) / ((1 + x)*(1 - 4*x - x^2)) + O(x^30)) \\ Colin Barker, Jun 06 2017

Formula

a(n) + a(n+1) = A048875(n+1) - A048875(n).
a(n) = -(10*(-1)^n + (2-sqrt(5))^n*(-15+sqrt(5)) - (2+sqrt(5))^n*(15+sqrt(5))) / 20. - Colin Barker, Jun 06 2017

Extensions

Corrected and extended by Robert G. Wilson v, Mar 16 2005

A244470 Maximal term in row n of sequence A240388 when regarded as a triangle.

Original entry on oeis.org

1, 1, 2, 4, 6, 9, 17, 25, 40, 72, 106, 169, 305, 449, 716, 1292, 1902, 3033, 5473, 8057, 12848, 23184, 34130, 54425, 98209, 144577, 230548, 416020, 612438, 976617, 1762289, 2594329, 4137016, 7465176, 10989754, 17524681, 31622993, 46553345
Offset: 2

Views

Author

N. J. A. Sloane, Jul 01 2014

Keywords

Crossrefs

Trisections: A001076, A048875.

Programs

  • Maple
    A244470 := proc(n)
        coeftayl( (x^2+x^3+2*x^4+2*x^6+x^7+2*x^10)/(1-4*x^3-x^6),x=0,n) ;
    end proc:
    seq(A244470(n), n=1..50) ; # R. J. Mathar, Jul 05 2014
  • Mathematica
    CoefficientList[Series[(1 + x + 2*x^2 + 2*x^4 + x^5 + 2*x^8)/(1 - 4*x^3 - x^6), {x, 0, 30}], x] (* Wesley Ivan Hurt, Jul 05 2014 *)
    LinearRecurrence[{0,0,4,0,0,1},{1,1,2,4,6,9,17,25,40},40] (* Harvey P. Dale, Apr 08 2015 *)

Formula

G.f.: (x^2+x^3+2*x^4+2*x^6+x^7+2*x^10)/(1-4*x^3-x^6).
a(3*n-1) = A001076(n). a(3*n) = A048875(n-1). - R. J. Mathar, Jul 05 2014
a(n) = 4*a(n-3) + a(n-6). - Harvey P. Dale, Apr 08 2015
a(3*n+1) = 2*Lucas(3*n-3) + Fibonacci(3*n-3)/2 for n>1. - Greg Dresden, Oct 17 2021
Showing 1-10 of 11 results. Next