A001076
Denominators of continued fraction convergents to sqrt(5).
Original entry on oeis.org
0, 1, 4, 17, 72, 305, 1292, 5473, 23184, 98209, 416020, 1762289, 7465176, 31622993, 133957148, 567451585, 2403763488, 10182505537, 43133785636, 182717648081, 774004377960, 3278735159921, 13888945017644, 58834515230497, 249227005939632, 1055742538989025
Offset: 0
1 2 9 38 161 (A001077)
-,-,-,--,---, ...
0 1 4 17 72 (A001076)
G.f. = x + 4*x^2 + 17*x^3 + 72*x^4 + 305*x^5 + 1292*x^6 + 5473*x^7 + 23184*x^8 + ...
From _Enrique Navarrete_, Dec 16 2023: (Start)
From the comment on compositions with 3-metallonacci sorts of parts, A006190(k), there are A006190(1)=1 type of 1, A006190(2)=3 types of 2, A006190(3)=10 types of 3, A006190(4)=33 types of 4, A006190(5)=109 types of 5 and A006190(6)=360 types of 6. The following table gives the number of compositions of n=6:
Composition, number of such compositions, number of compositions of this type:
6, 1, 360;
5+1, 2, 218;
4+2, 2, 198;
3+3, 1, 100;
4+1+1, 3, 99;
3+2+1, 6, 180;
2+2+2, 1, 27;
3+1+1+1, 4, 40;
2+2+1+1, 6, 54;
2+1+1+1+1, 5, 15;
1+1+1+1+1+1, 1, 1;
for a total of a(6)=1292 compositions of n=6. (End)
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 23.
- S. Koshkin, Non-classical linear divisibility sequences ..., Fib. Q., 57 (No. 1, 2019), 68-80. See Table 1.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- V. Thébault, Les Récréations Mathématiques. Gauthier-Villars, Paris, 1952, p. 282.
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..200 from T. D. Noe)
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- Paraskevas K. Alvanos and Konstantinos A. Draziotis, Integer Solutions of the Equation y^2 = Ax^4 + B, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.4.
- Elwyn Berlekamp and Richard K. Guy, Fibonacci Plays Billiards (2003), arXiv:2002.03705 [math.HO], 2020. See p. 5.
- D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, Example 8.
- D. W. Boyd, Some integer sequences related to the Pisot sequences, Acta Arithmetica, 34 (1979), 295-305.
- D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
- Latham Boyle and Paul J. Steinhardt, Self-Similar One-Dimensional Quasilattices, arXiv preprint arXiv:1608.08220 [math-ph], 2016.
- E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242, Thm. 1, p. 233.
- M. C. Firengiz and A. Dil, Generalized Euler-Seidel method for second order recurrence relations, Notes on Number Theory and Discrete Mathematics, Vol. 20, 2014, No. 4, 21-32.
- Yixing Fu, E. J. König, J. H. Wilson, Yang-Zhi Chou, and J. H. Pixley, Magic-angle semimetals, arXiv:1809.04604 [cond-mat.str-el], 2018.
- Juan B. Gil and Aaron Worley, Generalized metallic means, arXiv:1901.02619 [math.NT], 2019.
- Brian Hopkins and Stéphane Ouvry, Combinatorics of Multicompositions, arXiv:2008.04937 [math.CO], 2020.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 398
- Milan Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
- Tanya Khovanova, Recursive Sequences
- C. Pita, On s-Fibonomials, J. Int. Seq. 14 (2011) # 11.3.7.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Kai Wang, On k-Fibonacci Sequences And Infinite Series List of Results and Examples, 2020.
- Shaoxiong (Steven) Yuan, Generalized Identities of Certain Continued Fractions, arXiv:1907.12459 [math.NT], 2019.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (4,1).
-
a:=[0,1];; for n in [3..30] do a[n]:=4*a[n-1]+a[n-2]; od; a; # Muniru A Asiru, Mar 31 2018
-
I:=[0,1]; [n le 2 select I[n] else 4*Self(n-1) + Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 24 2018
-
A001076:=-1/(-1+4*z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation
-
Join[{0}, Denominator[Convergents[Sqrt[5], 30]]] (* Harvey P. Dale, Dec 10 2011 *)
a[ n_] := Fibonacci[3*n] / 2; (* Michael Somos, Feb 23 2014 *)
a[ n_] := ((2 + Sqrt[5])^n - (2 - Sqrt[5])^n) /(2 Sqrt[5]) // Simplify; (* Michael Somos, Feb 23 2014 *)
LinearRecurrence[{4, 1}, {0, 1}, 26] (* Jean-François Alcover, Sep 23 2017 *)
a[ n_] := Fibonacci[n, 4]; (* Michael Somos, Nov 02 2021 *)
-
a(n):=sum(4^(n-1-2*k)*binomial(n-k-1,n-2*k-1),k,0,floor((n)/2));/* Vladimir Kruchinin, Oct 02 2022 */
-
numlib::fibonacci(3*n)/2 $ n = 0..30; // Zerinvary Lajos, May 09 2008
-
{a(n) = fibonacci(3*n) / 2}; /* Michael Somos, Aug 11 2009 */
-
{a(n) = imag( (2 + quadgen(20))^n )}; /* Michael Somos, Feb 23 2014 */
-
{a(n) = polchebyshev(n-1, 2, 2*I)/I^(n-1)}; /* Michael Somos, Nov 02 2021 */
-
[lucas_number1(n,4,-1) for n in range(23)] # Zerinvary Lajos, Apr 23 2009
-
[fibonacci(3*n)/2 for n in range(23)] # Zerinvary Lajos, May 15 2009
A001077
Numerators of continued fraction convergents to sqrt(5).
Original entry on oeis.org
1, 2, 9, 38, 161, 682, 2889, 12238, 51841, 219602, 930249, 3940598, 16692641, 70711162, 299537289, 1268860318, 5374978561, 22768774562, 96450076809, 408569081798, 1730726404001, 7331474697802, 31056625195209
Offset: 0
1 2 9 38 161 (A001077)
-, -, -, --, ---, ...
0 1 4 17 72 (A001076)
1 + 2*x + 9*x^2 + 38*x^3 + 161*x^4 + 682*x^5 + 2889*x^6 + 12238*x^7 + ... - _Michael Somos_, Aug 11 2009
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- V. Thébault, Les Récréations Mathématiques, Gauthier-Villars, Paris, 1952, p. 282.
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..200 from T. D. Noe)
- E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242, Ex. 1, pp. 237-238.
- Tanya Khovanova, Recursive Sequences
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (4,1).
Cf.
A000032,
A001076,
A023039,
A049629,
A052924,
A078343,
A164581,
A179237,
A180148,
A329723,
A374439.
-
I:=[1, 2]; [n le 2 select I[n] else 4*Self(n-1) + Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 19 2017
-
A001077:=(-1+2*z)/(-1+4*z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation
with(combinat): a:=n->fibonacci(n+1, 4)-2*fibonacci(n, 4): seq(a(n), n=0..30); # Zerinvary Lajos, Apr 04 2008
-
LinearRecurrence[{4, 1}, {1, 2}, 30]
Join[{1},Numerator[Convergents[Sqrt[5],30]]] (* Harvey P. Dale, Mar 23 2016 *)
CoefficientList[Series[(1-2*x)/(1-4*x-x^2), {x, 0, 30}], x] (* G. C. Greubel, Dec 19 2017 *)
LucasL[3*Range[0,30]]/2 (* Rigoberto Florez, Apr 03 2019 *)
a[ n_] := LucasL[n, 4]/2; (* Michael Somos, Nov 02 2021 *)
-
{a(n) = fibonacci(3*n) / 2 + fibonacci(3*n - 1)}; /* Michael Somos, Aug 11 2009 */
-
a(n)=if(n<2,n+1,my(t=4);for(i=1,n-2,t=4+1/t);numerator(2+1/t)) \\ Charles R Greathouse IV, Dec 05 2011
-
x='x+O('x^30); Vec((1-2*x)/(1-4*x-x^2)) \\ G. C. Greubel, Dec 19 2017
-
[lucas_number2(n,4,-1)/2 for n in range(0, 30)] # Zerinvary Lajos, May 14 2009
A374439
Triangle read by rows: the coefficients of the Lucas-Fibonacci polynomials. T(n, k) = T(n - 1, k) + T(n - 2, k - 2) with initial values T(n, k) = k + 1 for k < 2.
Original entry on oeis.org
1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 2, 3, 4, 1, 1, 2, 4, 6, 3, 2, 1, 2, 5, 8, 6, 6, 1, 1, 2, 6, 10, 10, 12, 4, 2, 1, 2, 7, 12, 15, 20, 10, 8, 1, 1, 2, 8, 14, 21, 30, 20, 20, 5, 2, 1, 2, 9, 16, 28, 42, 35, 40, 15, 10, 1, 1, 2, 10, 18, 36, 56, 56, 70, 35, 30, 6, 2
Offset: 0
Triangle starts:
[ 0] [1]
[ 1] [1, 2]
[ 2] [1, 2, 1]
[ 3] [1, 2, 2, 2]
[ 4] [1, 2, 3, 4, 1]
[ 5] [1, 2, 4, 6, 3, 2]
[ 6] [1, 2, 5, 8, 6, 6, 1]
[ 7] [1, 2, 6, 10, 10, 12, 4, 2]
[ 8] [1, 2, 7, 12, 15, 20, 10, 8, 1]
[ 9] [1, 2, 8, 14, 21, 30, 20, 20, 5, 2]
[10] [1, 2, 9, 16, 28, 42, 35, 40, 15, 10, 1]
.
Table of interpolated sequences:
| n | A039834 & A000045 | A000032 | A000129 | A048654 |
| n | -P(n,-1) | P(n,1) |2^n*P(n,-1/2)|2^n*P(n,1/2)|
| | Fibonacci | Lucas | Pell | Pell* |
| 0 | -1 | 1 | 1 | 1 |
| 1 | 1 | 3 | 0 | 4 |
| 2 | 0 | 4 | 1 | 9 |
| 3 | 1 | 7 | 2 | 22 |
| 4 | 1 | 11 | 5 | 53 |
| 5 | 2 | 18 | 12 | 128 |
| 6 | 3 | 29 | 29 | 309 |
| 7 | 5 | 47 | 70 | 746 |
| 8 | 8 | 76 | 169 | 1801 |
| 9 | 13 | 123 | 408 | 4348 |
Adding and subtracting the values in a row of the table (plus halving the values obtained in this way):
A022087,
A055389,
A118658,
A052542,
A163271,
A371596,
A324969,
A212804,
A077985,
A069306,
A215928.
-
function T(n,k) // T = A374439
if k lt 0 or k gt n then return 0;
elif k le 1 then return k+1;
else return T(n-1,k) + T(n-2,k-2);
end if;
end function;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 23 2025
-
A374439 := (n, k) -> ifelse(k::odd, 2, 1)*binomial(n - irem(k, 2) - iquo(k, 2), iquo(k, 2)):
# Alternative, using the function qStirling2 from A333143:
T := (n, k) -> 2^irem(k, 2)*qStirling2(n, k, -1):
seq(seq(T(n, k), k = 0..n), n = 0..10);
-
A374439[n_, k_] := (# + 1)*Binomial[n - (k + #)/2, (k - #)/2] & [Mod[k, 2]];
Table[A374439[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Paolo Xausa, Jul 24 2024 *)
-
from functools import cache
@cache
def T(n: int, k: int) -> int:
if k > n: return 0
if k < 2: return k + 1
return T(n - 1, k) + T(n - 2, k - 2)
-
from math import comb as binomial
def T(n: int, k: int) -> int:
o = k & 1
return binomial(n - o - (k - o) // 2, (k - o) // 2) << o
-
def P(n, x):
if n < 0: return P(n, x)
return sum(T(n, k)*x**k for k in range(n + 1))
def sgn(x: int) -> int: return (x > 0) - (x < 0)
# Table of interpolated sequences
print("| n | A039834 & A000045 | A000032 | A000129 | A048654 |")
print("| n | -P(n,-1) | P(n,1) |2^n*P(n,-1/2)|2^n*P(n,1/2)|")
print("| | Fibonacci | Lucas | Pell | Pell* |")
f = "| {0:2d} | {1:9d} | {2:4d} | {3:5d} | {4:4d} |"
for n in range(10): print(f.format(n, -P(n, -1), P(n, 1), int(2**n*P(n, -1/2)), int(2**n*P(n, 1/2))))
-
from sage.combinat.q_analogues import q_stirling_number2
def A374439(n,k): return (-1)^((k+1)//2)*2^(k%2)*q_stirling_number2(n+1, k+1, -1)
print(flatten([[A374439(n, k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 23 2025
A097924
a(n) = 4*a(n-1) + a(n-2), n>=2, a(0) = 2, a(1) = 7.
Original entry on oeis.org
2, 7, 30, 127, 538, 2279, 9654, 40895, 173234, 733831, 3108558, 13168063, 55780810, 236291303, 1000946022, 4240075391, 17961247586, 76085065735, 322301510526, 1365291107839, 5783465941882, 24499154875367, 103780085443350, 439619496648767, 1862258072038418
Offset: 0
G.f. = 2 + 7*x + 30*x^2 + 127*x^3 + 538*x^4 + 2279*x^5 + 9654*x^6 + 40895*x^7 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Mark W. Coffey, James L. Hindmarsh, Matthew C. Lettington, and John Pryce, On Higher Dimensional Interlacing Fibonacci Sequences, Continued Fractions and Chebyshev Polynomials, arXiv:1502.03085 [math.NT], 2015 (see p. 31).
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (4,1).
-
I:=[2,7]; [n le 2 select I[n] else 4*Self(n-1) + Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 20 2017
-
a[n_] := Expand[((2Sqrt[5] + 3)*(2 + Sqrt[5])^n + (2Sqrt[5] - 3)*(2 - Sqrt[5])^n)/(2Sqrt[5])]; Table[ a[n], {n, 0, 20}] (* Robert G. Wilson v, Sep 17 2004 *)
a[ n_] := (3 I ChebyshevT[ n + 1, -2 I] + 4 ChebyshevT[ n, -2 I]) I^n / 5; (* Michael Somos, Feb 23 2014 *)
a[ n_] := If[ n < 0, SeriesCoefficient[ (2 + 7 x) / (1 + 4 x - x^2), {x, 0, -n}], SeriesCoefficient[ (2 - x) / (1 - 4 x - x^2), {x, 0, n}]]; (* Michael Somos, Feb 23 2014 *)
LinearRecurrence[{4,1}, {2,7}, 50] (* G. C. Greubel, Dec 20 2017 *)
-
{a(n) = ( 3*I*polchebyshev( n+1, 1, -2*I) + 4*polchebyshev( n, 1, -2*I)) * I^n / 5}; \\ Michael Somos, Feb 23 2014
-
{a(n) = if( n<0, polcoeff( (2 + 7*x) / (1 + 4*x - x^2) + x * O(x^-n), -n), polcoeff( (2 - x) / (1 - 4*x - x^2) + x * O(x^n), n))}; \\ Michael Somos, Feb 23 2014
A133632
a(1)=1, a(n) = (p-1)*a(n-1), if n is even, otherwise a(n) = p*a(n-2), where p = 5.
Original entry on oeis.org
1, 4, 5, 20, 25, 100, 125, 500, 625, 2500, 3125, 12500, 15625, 62500, 78125, 312500, 390625, 1562500, 1953125, 7812500, 9765625, 39062500, 48828125, 195312500, 244140625, 976562500, 1220703125, 4882812500, 6103515625, 24414062500
Offset: 1
-
RecurrenceTable[{a[1]==1,a[2]==4,a[n]==If[EvenQ[n],4a[n-1],5a[n-2]]},a,{n,30}] (* Harvey P. Dale, Jan 14 2013 *)
Original entry on oeis.org
1, 5, 14, 48, 152, 496, 1600, 5184, 16768, 54272, 175616, 568320, 1839104, 5951488
Offset: 1
a(4) = 48 = sum of row 4 terms of triangle A134417: (1 + 12 + 15 + 20).
a(4) = 48 = (1, 3, 3, 1) dot (1, 4, 5, 20), given A133632 = (1, 4, 5, 20, 25, 100, ...).
a(3) = 14 = (1, -2, 1) dot (1, 6, 25), = (1, -12, 25), where A048875 = (1, 6, 25, 106, 449, 1902, ...).
A328695
Rectangular array R read by descending antidiagonals: divide to each even term of the Wythoff array (A035513) by 2, and delete all others.
Original entry on oeis.org
1, 4, 2, 17, 9, 3, 72, 38, 5, 12, 305, 161, 8, 51, 6, 1292, 682, 13, 216, 10, 7, 5473, 2889, 21, 915, 16, 30, 14, 23184, 12238, 34, 3876, 26, 127, 59, 25, 98209, 51841, 55, 16419, 42, 538, 250, 106, 11, 416020, 219602, 89, 69552, 68, 2279, 1059, 449, 18, 33
Offset: 1
Row 1 of the Wythoff array is (1,2,3,5,8,13,21,34,55,89,144,...), so that row 1 of R is (1,4,17,72,...).
_______________
Northwest corner of R:
1 4 17 72 305 1292 5473
2 9 38 161 682 2889 12238
3 5 8 13 21 34 55
12 51 216 915 3876 16419 69552
6 10 16 26 42 68 110
7 30 127 538 2279 9654 40895
Cf.
A035513,
A001076,
A001077,
A000045,
A115179,
A006355,
A097924,
A048875,
A000032,
A328696,
A328697.
-
w[n_, k_] := Fibonacci[k + 1] Floor[n*GoldenRatio] + (n - 1) Fibonacci[k];
Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten;
q[n_, k_] := If[Mod[w[n, k], 2] == 0, w[n, k]/2, 0];
t[n_] := Union[Table[q[n, k], {k, 1, 50}]];
u[n_] := If[First[t[n]] == 0, Rest[t[n]], t[n]]
Table[u[n], {n, 1, 10}] (* A328695 array *)
v[n_, k_] := u[n][[k]];
Table[v[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* A328695 sequence *)
A182001
Riordan array ((2*x+1)/(1-x-x^2), x/(1-x-x^2)).
Original entry on oeis.org
1, 3, 1, 4, 4, 1, 7, 9, 5, 1, 11, 20, 15, 6, 1, 18, 40, 40, 22, 7, 1, 29, 78, 95, 68, 30, 8, 1, 47, 147, 213, 185, 105, 39, 9, 1, 76, 272, 455, 466, 320, 152, 49, 10, 1, 123, 495, 940, 1106, 891, 511, 210, 60, 11, 1, 199, 890, 1890, 2512, 2317, 1554, 770, 280, 72, 12, 1
Offset: 0
Triangle begins :
1;
3, 1;
4, 4, 1;
7, 9, 5, 1;
11, 20, 15, 6, 1;
18, 40, 40, 22, 7, 1;
29, 78, 95, 68, 30, 8, 1;
47, 147, 213, 185, 105, 39, 9, 1;
76, 272, 455, 466, 320, 152, 49, 10, 1;
123, 495, 940, 1106, 891, 511, 210, 60, 11, 1;
199, 890, 1890, 2512, 2317, 1554, 770, 280, 72, 12, 1;
(0, 3, -5/3, -1/3, 0, 0, ...) DELTA (1, 0, -2/3, 2/3, 0, 0, ...) begins:
1;
0, 1;
0, 3, 1;
0, 4, 4, 1;
0, 7, 9, 5, 1;
0, 11, 20, 15, 6, 1;
0, 18, 40, 40, 22, 7, 1;
-
function T(n,k)
if k lt 0 or k gt n then return 0;
elif k eq n then return 1;
elif k eq 0 then return Lucas(n+1);
else return T(n-1,k) + T(n-1,k-1) + T(n-2,k);
end if; return T; end function;
[T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 18 2020
-
with(combinat);
T:= proc(n, k) option remember;
if k<0 or k>n then 0
elif k=n then 1
elif k=0 then fibonacci(n+2) + fibonacci(n)
else T(n-1,k) + T(n-1,k-1) + T(n-2,k)
fi; end:
seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Feb 18 2020
-
With[{m = 10}, CoefficientList[CoefficientList[Series[(1+2*x)/(1-x-y*x-x^2), {x, 0, m}, {y, 0, m}], x], y]] // Flatten (* Georg Fischer, Feb 18 2020 *)
T[n_, k_]:= T[n, k]= If[k<0||k>n, 0, If[k==n, 1, If[k==0, LucasL[n+1], T[n-1, k] + T[n-1, k-1] + T[n-2, k] ]]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 18 2020 *)
a(29) corrected by and a(55)-a(65) from
Georg Fischer, Feb 18 2020
A102129
Expansion of (1 - x)*(1 + 2*x) / ((1 + x)*(1 - 4*x - x^2)).
Original entry on oeis.org
1, 4, 15, 66, 277, 1176, 4979, 21094, 89353, 378508, 1603383, 6792042, 28771549, 121878240, 516284507, 2187016270, 9264349585, 39244414612, 166242008031, 704212446738, 2983091794981, 12636579626664, 53529410301635, 226754220833206, 960546293634457
Offset: 0
-
CoefficientList[ Series[((-1 + x)(2x + 1))/((1 + x)(x^2 + 4x - 1)), {x, 0, 22}], x] (* Robert G. Wilson v, Mar 16 2005 *)
-
Vec((1 - x)*(1 + 2*x) / ((1 + x)*(1 - 4*x - x^2)) + O(x^30)) \\ Colin Barker, Jun 06 2017
A244470
Maximal term in row n of sequence A240388 when regarded as a triangle.
Original entry on oeis.org
1, 1, 2, 4, 6, 9, 17, 25, 40, 72, 106, 169, 305, 449, 716, 1292, 1902, 3033, 5473, 8057, 12848, 23184, 34130, 54425, 98209, 144577, 230548, 416020, 612438, 976617, 1762289, 2594329, 4137016, 7465176, 10989754, 17524681, 31622993, 46553345
Offset: 2
- J. Lansing, Largest Values for the Stern Sequence, J. Integer Seqs., 17 (2014), #14.7.5.
- Index entries for linear recurrences with constant coefficients, signature (0,0,4,0,0,1).
-
A244470 := proc(n)
coeftayl( (x^2+x^3+2*x^4+2*x^6+x^7+2*x^10)/(1-4*x^3-x^6),x=0,n) ;
end proc:
seq(A244470(n), n=1..50) ; # R. J. Mathar, Jul 05 2014
-
CoefficientList[Series[(1 + x + 2*x^2 + 2*x^4 + x^5 + 2*x^8)/(1 - 4*x^3 - x^6), {x, 0, 30}], x] (* Wesley Ivan Hurt, Jul 05 2014 *)
LinearRecurrence[{0,0,4,0,0,1},{1,1,2,4,6,9,17,25,40},40] (* Harvey P. Dale, Apr 08 2015 *)
Showing 1-10 of 11 results.
Comments