cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052997 Expansion of (1+x-x^3)/((1-2*x)*(1-x^2)).

Original entry on oeis.org

1, 3, 7, 14, 29, 58, 117, 234, 469, 938, 1877, 3754, 7509, 15018, 30037, 60074, 120149, 240298, 480597, 961194, 1922389, 3844778, 7689557, 15379114, 30758229, 61516458, 123032917, 246065834, 492131669, 984263338, 1968526677
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Programs

  • Maple
    spec := [S,{S=Prod(Union(Sequence(Prod(Z,Z)),Z),Sequence(Union(Z,Z)))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
  • Mathematica
    f[s_List] := Block[{a = s[[-1]]}, Append[s, If[ OddQ@ Length@ s, 2a +1, 2a]]]; Join[{1},  Nest[f, {3}, 30]] (* or *)
    CoefficientList[ Series[(1 + x - x^3)/(1 - 2x - x^2 + 2x^3), {x, 0, 30}], x] (* Robert G. Wilson v, Jul 20 2017 *)
    LinearRecurrence[{2,1,-2},{1,3,7,14},40] (* Harvey P. Dale, May 27 2019 *)

Formula

G.f.: -(-x+x^3-1)/(-1+x^2)/(-1+2*x).
Recurrence: {a(0)=1, -2*a(n)-a(n+1)+a(n+2)-1, a(1)= 3, a(2)=7, a(3)=14}, 11/6*2^n + Sum(-1/6*(2 + _alpha)*_alpha^(-1-n), _alpha=RootOf(-1 + _Z^2))
a(n) = 2*a(n-1)+1 for even n, otherwise a(n) = 2*a(n-1), with a(0)=1, a(1)=3. [Bruno Berselli, Jun 19 2014]
3*a(n) = 11*2^(n-1)-A000034(n) for n>0. - R. J. Mathar, Feb 27 2019

Extensions

More terms from James Sellers, Jun 06 2000