A053012 Platonic numbers: a(n) is a tetrahedral (A000292), cube (A000578), octahedral (A005900), dodecahedral (A006566) or icosahedral (A006564) number.
1, 4, 6, 8, 10, 12, 19, 20, 27, 35, 44, 48, 56, 64, 84, 85, 120, 124, 125, 146, 165, 216, 220, 231, 255, 286, 343, 344, 364, 455, 456, 489, 512, 560, 670, 680, 729, 742, 816, 891, 969, 1000, 1128, 1140, 1156, 1330, 1331, 1469, 1540, 1629, 1728, 1771, 1834
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- OEIS Wiki, Platonic numbers
Programs
-
Haskell
a053012 n = a053012_list !! (n-1) a053012_list = tail $ f [a000292_list, a000578_list, a005900_list, a006566_list, a006564_list] where f pss = m : f (map (dropWhile (<= m)) pss) where m = minimum (map head pss) -- Reinhard Zumkeller, Jun 17 2013
-
Mathematica
nn = 25; t1 = Table[n (n + 1) (n + 2)/6, {n, nn}]; t2 = Table[n^3, {n, nn}]; t3 = Table[(2*n^3 + n)/3, {n, nn}]; t4 = Table[n (3*n - 1) (3*n - 2)/2, {n, nn}]; t5 = Table[n (5*n^2 - 5*n + 2)/2, {n, nn}]; Select[Union[t1, t2, t3, t4, t5], # <= t1[[-1]] &] (* T. D. Noe, Oct 13 2012 *)
-
PARI
listpoly(lim, poly[..])=my(v=List()); for(i=1,#poly, my(P=poly[i], x=variable(P), f=k->subst(P,x,k),n,t); while((t=f(n++))<=lim, listput(v, t))); Set(v) list(lim)=my(n='n); listpoly(lim, n*(n+1)*(n+2)/6, n^3, (2*n^3+n)/3, n*(3*n-1)*(3*n-2)/2, n*(5*n^2-5*n+2)/2) \\ Charles R Greathouse IV, Oct 11 2016
Comments