A137869 Primes p with property that (p - previous prime) >= 6 and (next prime - p) >= 6.
53, 89, 157, 173, 211, 251, 257, 263, 293, 331, 337, 359, 367, 373, 389, 409, 449, 479, 509, 541, 547, 557, 563, 577, 587, 593, 607, 631, 653, 683, 691, 701, 709, 719, 727, 733, 751, 787, 797, 839, 919, 929, 947, 953, 977, 983, 991, 997, 1039, 1069, 1103, 1109, 1117
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[p:p in PrimesInInterval(3,1200)|p-PreviousPrime(p) ge 6 and NextPrime(p)-p ge 6]; // Marius A. Burtea, Aug 11 2019
-
Maple
M:=1000; t1:=[]; for i from 2 to M do p:=ithprime(i); o:=prevprime(p); q:=nextprime(p); if p-o >= 6 and q-p >= 6 then t1:=[op(t1),p]; fi; od: t1; # N. J. A. Sloane
-
Mathematica
lst={};Do[p=Prime[n];If[ !PrimeQ[p-2]&&!PrimeQ[p+2]&&!PrimeQ[p-4]&&!PrimeQ[p+4],AppendTo[lst,p]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Jul 20 2009 *) Select[Partition[Prime[Range[200]],3,1],Min[Differences[#]]>5&][[;;,2]] (* Harvey P. Dale, Oct 29 2023 *)
-
PARI
p=q=2;forprime(r=2,999,r-q>4 & q-p>4 & print1(q","); p=q; q=r) \\ M. F. Hasler, May 02 2009
Extensions
Edits and more terms from N. J. A. Sloane, May 02 2009
Comments