A053090 Number of F^3-convex polyominoes on honeycomb lattice with given semiperimeter.
1, 0, 3, 2, 6, 6, 12, 12, 21, 22, 33, 36, 50, 54, 72, 78, 99, 108, 133, 144, 174, 188, 222, 240, 279, 300, 345, 370, 420, 450, 506, 540, 603, 642, 711, 756, 832, 882, 966, 1022, 1113, 1176, 1275, 1344, 1452, 1528, 1644, 1728, 1853, 1944, 2079, 2178, 2322, 2430
Offset: 3
Examples
x^3 + 3*x^5 + 2*x^6 + 6*x^7 + 6*x^8 + 12*x^9 + 12*x^10 + 21*x^11 + ... +---+ | o | a(3) = 1 +---------------+ | o o | o | o | a(5) = 3 | | o | o | +---------------+ | o | o o | a(6) = 2 | o o | o | +---------------------------------------+ | | o | o | o | | o o | | o o o | o | o | o o | o o | o o | a(7) = 6 | | o | o | o | o o | | +---------------------------------------+ - _Michael Somos_, Jun 21 2012
References
- Fouad Ibn-Majdoub-Hassani. Combinatoire de polyominos et des tableaux décalés oscillants. Thèse de Doctorat. Laboratoire de Recherche en Informatique, Université Paris-Sud XI, France.
- Alain Denise, Christoph Durr and Fouad Ibn-Majdoub-Hassani. Enumération et génération aléatoire de polyominos convexes en réseau hexagonal (French) [enumeration and random generation of convex polyominoes in the honeycomb lattice]. In Proceedings of 9th Conference on Formal Power Series and Algebraic Combinatorics (FPSAC97), pages 222-234, 1997.
Links
- Jianing Song, Table of n, a(n) for n = 3..10003
- Alain Denise, Christoph Duerr and Fouad Ibn-Majdoub-Hassani, Enumération et génération aléatoire de polyominos convexes en réseau hexagonal (French)
- Stephen P. Humphries, Action of some braid groups on Hodge algebras Comm. Algebra 26 (1998), no. 4, pages 1233-1242. See Proposition 3.4 on page 1241. [From _Stephen P. Humphries_, Feb 06 2009]
- Index entries for linear recurrences with constant coefficients, signature (1,2,-1,-2,-1,2,1,-1)
Programs
-
Maple
A053090 := proc(n) n*(2*n^2+3-27*(-1)^n)-32*A049347(n-1) ; %/144 ; end proc: seq(A053090(n),n=3..30) ; # R. J. Mathar, Mar 12 2025
-
PARI
{a(n) = round( n * (2*n^2 + 3) / 144 - (-1)^n * 3*n / 16)} /* Michael Somos, Jun 21 2012 */
-
PARI
{a(n) = sign(n) * polcoeff( x^3 * (1 + x^3) / ((1 - x^2)^3 * (1 - x^3)) + x * O(x^abs(n)), abs(n))} /* Michael Somos, Jun 21 2012 */
Formula
G.f.: x^3*(1 + x^3)/((1 - x^2)^3*(1 - x^3)).
a(-n) = -a(n). a(n) = round( n*(2*n^2 + 3)/144 - (-1)^n*3*n/16 ). - Michael Somos, Jun 21 2012
Comments