cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Fouad IBN MAJDOUB HASSANI

Fouad IBN MAJDOUB HASSANI's wiki page.

Fouad IBN MAJDOUB HASSANI has authored 7 sequences.

A082398 Number of directed, diagonally convex polyominoes with n cells.

Original entry on oeis.org

1, 0, 3, 10, 33, 106, 331, 1009, 3017, 8884, 25841, 74416, 212533, 602785, 1699503, 4767166, 13312641, 37031254, 102651967, 283676689, 781763381, 2149017256, 5894114513, 16132400860, 44071485673, 120188174401, 327242994651
Offset: 1

Author

Keywords

References

  • Fouad Ibn-Majdoub-Hassani. Combinatoire de polyominos et des tableaux decales oscillants. These de Doctorat, Laboratoire de Recherche en Informatique, Universite Paris-Sud XI, France.

Programs

  • Mathematica
    Join[{1, 0}, Take[CoefficientList[Series[(q*(1 - 4*q + 6*q^2 - 3*q^3 + q^4))/((1 - q)*(1 - 3*q + q^2)^2), {q, 0, 27}], q], -26]]

Formula

G.f.: (x*(1-4*x+6*x^2-3*x^3+x^4))/((1-x)*(1-3*x+x^2)^2)

Extensions

More terms from Robert G. Wilson v, Apr 15 2003

A082397 Number of directed aggregates of height <= 2 with n cells.

Original entry on oeis.org

1, 2, 5, 11, 26, 62, 153, 385, 988, 2573, 6786, 18084, 48621, 131718, 359193, 985185, 2715972, 7521567, 20915256, 58373586, 163462815, 459136809, 1293223230, 3651864606, 10336625731, 29321683082, 83344398533, 237344961291
Offset: 1

Author

Keywords

Comments

Conjecture: partial sums of A342912. - Sean A. Irvine, Jul 16 2022

References

  • Fouad Ibn-Majdoub-Hassani. Combinatoire de polyominos et des tableaux décalés oscillants. Thèse de Doctorat. 1991. Laboratoire de Recherche en Informatique, Université Paris-Sud XI, France.

Programs

  • Maple
    A082397 := proc(n)
        add( (-1)^(k+1)*binomial(n+1,k+1)*binomial(k,floor((k-1)/2)),k=1..n) ;
    end proc:
    seq(A082397(n),n=1..30) ; # R. J. Mathar, Jun 27 2022
  • Mathematica
    Table[Sum[(-1)^(i+1)*Binomial[k+1, i+1] Binomial[i, Floor[(i-1)/2]], {i,1,k}], {k,1,20}] (* Rigoberto Florez, Dec 10 2022 *)
  • Python
    import math
    def Sum(k):
        S= sum((-1)**(i+1)*math.comb(k,i+1)*math.comb(i,math.floor((i-1)/2)) for i in range(1,k))
        return S
    for i in range (2,20): print(Sum(i))
    # Rigoberto Florez, Dec 10 2022

Formula

a(n) = Sum_{k=1..n}(-1)^(k+1)*binomial(n+1, k+1)*binomial(k, floor((k-1)/2)). E.g.f.: -exp(x)*int(-BesselI(1, 2*x)+BesselI(2, 2*x), x)-exp(x)*(-BesselI(1, 2*x)+BesselI(2, 2*x)). - Vladeta Jovovic, Sep 18 2003
Conjecture D-finite with recurrence +(n+2)*a(n) +(-3*n-2)*a(n-1) -n*a(n-2) +3*n*a(n-3)=0. - R. J. Mathar, Jun 27 2022

Extensions

More terms from Vladeta Jovovic, Sep 18 2003

A082395 Number of shifted Young tableaux with height <= 3.

Original entry on oeis.org

1, 1, 2, 3, 6, 12, 27, 63, 154, 386, 989, 2574, 6787, 18085, 48622, 131719, 359194, 985186, 2715973, 7521568, 20915257, 58373587, 163462816, 459136810, 1293223231, 3651864607, 10336625732, 29321683083, 83344398534, 237344961292, 677087183363, 1934730432503
Offset: 1

Author

Keywords

Examples

			G.f.: A(x) = x + x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 12*x^6 + 27*x^7 + 63*x^8 + 154*x^9 + 386*x^10 + 989*x^11 + 2574*x^12 + ...
		

Crossrefs

Partial sums of A005043.
Cf. A363555.

Programs

  • Mathematica
    Table[Sum[(-1)^(k+1)*Binomial[n, k]*Binomial[k-1, Floor[k/2]],{k,1,n}],{n,1,20}]
    RecurrenceTable[{3*(n-2)*a[n-3]+(2-n)*a[n-2]+(4-3n)*a[n-1]+n*a[n]==0,a[1]==1,a[2]==1,a[3]==2},a,{n,20}] (* Vaclav Kotesovec, Oct 02 2012 *)
  • Sage
    def A082395():
        a, b, s, n = 1, 0, 1, 1
        yield a
        while True:
            s += b
            yield s
            n += 1
            a, b = b, (2*b+3*a)*(n-1)/(n+1)
    A082395_list = A082395()
    [next(A082395_list) for i in range(30)] # Peter Luschny, Sep 24 2014

Formula

a(n) = Sum_{k=1..n}(-1)^(k+1)*binomial(n, k)*binomial(k-1, floor(k/2)). - Vladeta Jovovic, Sep 18 2003
Recurrence: 3*(n-2)*a(n-3)+(2-n)*a(n-2)+(4-3*n)*a(n-1)+n*a(n)=0. - Vaclav Kotesovec, Oct 02 2012
Asymptotic: a(n) ~ 3^(n+3/2)/(16*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 02 2012
From Paul D. Hanna, Jul 08 2023: (Start)
G.f. A(x) = (1 + x - sqrt(1 - 2*x - 3*x^2))/(2*(1-x^2)).
G.f. A(x) = A(x)^2 + (1 - A(x)^2)*x + (A(x) - A(x)^2)*x^2 + A(x)^2*x^3.
G.f. A(x) satisfies 0 = Sum_{n>=0} (-1)^n * x^(n*(n-3)/2) * A(x)^n / Product_{k=0..n+1} (1 - x^k*A(x)). (End)

Extensions

More terms from Vladeta Jovovic, Sep 18 2003

A053091 F^3-convex polyominoes on the honeycomb lattice by number of cells.

Original entry on oeis.org

1, 3, 5, 6, 9, 11, 10, 15, 18, 14, 21, 23, 18, 30, 29, 21, 33, 35, 31, 39, 41, 30, 42, 54, 35, 51, 53, 38, 66, 54, 42, 63, 65, 60, 69, 70, 43, 75, 90, 54, 81, 83, 63, 93, 89, 62, 90, 95, 84, 99, 90, 77, 105, 126, 74, 111, 113, 60, 138, 119, 91, 126, 125, 108
Offset: 1

Author

Keywords

Comments

The polyominoes are counted up to translations but not rotations and reflections. Thus, the unique domino with two cells is counted three times for its three orientations. - Michael Somos, Jun 21 2012

Examples

			x + 3*x^2 + 5*x^3 + 6*x^4 + 9*x^5 + 11*x^6 + 10*x^7 + 15*x^8 + 18*x^9 + ...
+---+
| o | a(1) = 1
+---------------+
| o o | o  |  o | a(2) = 3
|     |  o | o  |
+-------------------------------+
|  o  | o o |       | o   |   o |
| o o |  o  | o o o |  o  |  o  | a(3) = 5
|     |     |       |   o | o   |
+-------------------------------------------+
|         | o    |    o |  o  |      |      |
| o o o o |  o   |   o  | o o |  o o | o o  | a(4) = 6
|         |   o  |  o   |  o  | o o  |  o o |
|         |    o | o    |     |      |      |
+-------------------------------------------+
- _Michael Somos_, Jun 21 2012
		

References

  • Fouad Ibn-Majdoub-Hassani. Combinatoire de polyominos et des tableaux decales oscillants. These de Doctorat. Laboratoire de Recherche en Informatique, Universite Paris-Sud XI, France.
  • Alain Denise, Christoph Durr and Fouad Ibn-Majdoub-Hassani. Enumeration et generation aleatoire de polyominos convexes en reseau hexagonal (French) [enumeration and random generation of convex polyominoes in the honeycomb lattice]. In Proceedings of 9th Conference on Formal Power Series and Algebraic Combinatorics, pages 222-234, 1997.

Programs

  • PARI
    {a(n) = local(m = 4*n); if( n<1, 0, (-1)^n / 2 * polcoeff( sum( k=1, m, k * kronecker( 2, k) * if( k%4 == 3, x^k, x^(3*k)) / (1 + x^(4*k)), O(x^m)), m - 1))} /* Michael Somos, Jun 20 2012 */
    
  • PARI
    {a(n) = if( n<1, 0, polcoeff( sum( i=1, n, x^i * (1 + x^i) / (1 - x^i) * ( sum( k=1, i, x^((i - k) * (i + k - 1)/2), x * O(x^(n - i))))^2 ), n))} /* Michael Somos, Jun 21 2012 */

Formula

Expansion of F^3(1, 1, q, 1) in powers of q where F^3(x, y, q, t) is the generating function defined in the FPSAC97 article. - Michael Somos, Jun 20 2012
G.f.: sum_{n >= 1} sum{d|n} b_d^2 * x^d * (1 + sign(n-d)), where b_0 = 0 and
b_i = x^binomial(i, 2) * sum_{k=1}^{i} x^(-binomial(i, 2)) for i >= 1 [corrected by Michael Somos, Jun 21 2012]

A053022 Number of subdiagonal directed diagonally-convex animals with given diagonal semiperimeter.

Original entry on oeis.org

1, 1, 3, 9, 30, 107, 396, 1506, 5848, 23087, 92381, 373830, 1527192, 6290054, 26090780, 108895558, 456992576, 1927176941, 8162557837, 34708427777, 148110582311, 634074235584, 2722547715302, 11721572763762, 50591504811439
Offset: 2

Author

Keywords

References

  • F. Ibn-Majdoub-Hassani, Generating functions for directed animals convex following their direction, In: Actes du Seminaire Lotharingien de Combinatoire, 33rd session. Publication de l'IRMA, Strasbourg, France, 1994.
  • F. Ibn-Majdoub-Hassani, Combinatorics of polyominoes and oscillating shifted tableaux. Phd Thesis. Laboratoire de Recherche en Informatique, Univ. Paris-Sud, France, 1996

Formula

G.f.: A(x)^4 + 2x(1 - x + x^2)A(x)^3 + x( - 1 + 3x - 7x^2 + 5x^3 - 2x^4 + x^5)A(x)^2 + x^3(2 - 5x + 6x^2 - 3x^3 + 2x^4)A(x) + x^5( - 1 + 2x - x^2 + x^3) = 0.

Extensions

More terms from Vladeta Jovovic, Mar 27 2001

A053090 Number of F^3-convex polyominoes on honeycomb lattice with given semiperimeter.

Original entry on oeis.org

1, 0, 3, 2, 6, 6, 12, 12, 21, 22, 33, 36, 50, 54, 72, 78, 99, 108, 133, 144, 174, 188, 222, 240, 279, 300, 345, 370, 420, 450, 506, 540, 603, 642, 711, 756, 832, 882, 966, 1022, 1113, 1176, 1275, 1344, 1452, 1528, 1644, 1728, 1853, 1944, 2079, 2178, 2322, 2430
Offset: 3

Author

Keywords

Comments

Sequence is also given by the Poincaré series [or Poincare series] of an ordinal Hodge algebra, or algebra with straightening law, that the three-strand braid group acts on. - Stephen P. Humphries, Feb 06 2009
From Michael Somos, Jun 21 2012: (Start)
Euler transform of length-6 sequence [ 0, 3, 2, 0, 0, -1].
Expansion of F^3(x, 1, 1, 1) in powers of x where F^3(x, y, q, t) is the generating function defined in the FPSAC97 article.
The polyominoes are counted up to translations but not rotations and reflections. Thus, the unique domino with two cells is counted three times for its three orientations.
The semiperimeter of each hexagonal cell is 3 but each common side shared by two cells decreases the semiperimeter by one. (End)
From Jianing Song, Apr 27 2022: (Start)
Let w = exp(2*Pi*i/6) be a primitive 6th root of 1. Then a(n+3) is number of nonnegative integer solutions to Sum_{j=0..5} x_j = n, Sum_{j=0..5} (x_j)*w^j = 0.
Proof: Sum_{j=0..5} (x_j)*w^j = x_0 + (x_1)*w + (x_2)*(w-1) - x_3 - (x_4)*w - (x_5)*(w-1), so Sum_{j=0..5} (x_j)*w^j = 0 if and only if x_0 + x_5 = x_2 + x_3 and x_1 + x_2 = x_4 + x_5, or equivalently, x_0 - x_3 = x_2 - x_5 = x_4 - x_1.
Case (a): x_0 - x_3 = x_2 - x_5 = x_4 - x_1 >= 0, then we can write x_0 = x+t, x_1 = z, x_2 = y+t, x_3 = x, x_4 = z+t, x_5 = y. The number of solutions in this case is equal to the number of solutions to 2*s + 3*t = n, x+y+z = s.
Case (b): x_0 - x_3 = x_2 - x_5 = x_4 - x_1 <= 0, then we can write x_0 = x, x_1 = z+t, x_2 = y, x_3 = x+t, x_4 = z, x_5 = y+t. The number of solutions in this case is also equal to the number of solutions to 2*s + 3*t = n, x+y+z = s.
The common part of case (a) and case (b) is the case where x_0 - x_3 = x_2 - x_5 = x_4 - x_1 = 0, in which case the number of solutions is equal to the number of solutions to x+y+z = n/2 for even n and 0 for odd n.
In conclusion, the total number of solutions is 2*Sum_{s=0..n/2, 3|(n-2*s)} (s+1)*(s+2)/2 - [n even]*(n/2+1)*(n/2+2)/2, where [] is an Iverson bracket. This can be shown to be equal to a(n+3). (End)

Examples

			x^3 + 3*x^5 + 2*x^6 + 6*x^7 + 6*x^8 + 12*x^9 + 12*x^10 + 21*x^11 + ...
+---+
| o | a(3) = 1
+---------------+
| o o | o  |  o | a(5) = 3
|     |  o | o  |
+---------------+
|  o  | o o | a(6) = 2
| o o |  o  |
+---------------------------------------+
|       | o   |   o |  o  |      | o o  |
| o o o |  o  |  o  | o o |  o o |  o o | a(7) = 6
|       |   o | o   |  o  | o o  |      |
+---------------------------------------+
- _Michael Somos_, Jun 21 2012
		

References

  • Fouad Ibn-Majdoub-Hassani. Combinatoire de polyominos et des tableaux décalés oscillants. Thèse de Doctorat. Laboratoire de Recherche en Informatique, Université Paris-Sud XI, France.
  • Alain Denise, Christoph Durr and Fouad Ibn-Majdoub-Hassani. Enumération et génération aléatoire de polyominos convexes en réseau hexagonal (French) [enumeration and random generation of convex polyominoes in the honeycomb lattice]. In Proceedings of 9th Conference on Formal Power Series and Algebraic Combinatorics (FPSAC97), pages 222-234, 1997.

Programs

  • Maple
    A053090 := proc(n)
        n*(2*n^2+3-27*(-1)^n)-32*A049347(n-1) ;
        %/144 ;
    end proc:
    seq(A053090(n),n=3..30) ; # R. J. Mathar, Mar 12 2025
  • PARI
    {a(n) = round( n * (2*n^2 + 3) / 144 - (-1)^n * 3*n / 16)} /* Michael Somos, Jun 21 2012 */
    
  • PARI
    {a(n) = sign(n) * polcoeff( x^3 * (1 + x^3) / ((1 - x^2)^3 * (1 - x^3)) + x * O(x^abs(n)), abs(n))} /* Michael Somos, Jun 21 2012 */

Formula

G.f.: x^3*(1 + x^3)/((1 - x^2)^3*(1 - x^3)).
a(-n) = -a(n). a(n) = round( n*(2*n^2 + 3)/144 - (-1)^n*3*n/16 ). - Michael Somos, Jun 21 2012

A053151 Number of directed EG-convex polyominoes on the honeycomb lattice with given semiperimeter.

Original entry on oeis.org

1, 0, 3, 2, 9, 12, 31, 53, 116, 215, 446, 849, 1726, 3320, 6688, 12932, 25925, 50297, 100546, 195562, 390257, 760630, 1516233, 2960502, 5897425, 11533047, 22964739, 44972711, 89528901, 175546608, 349425044, 685913758, 1365249931, 2682660933
Offset: 3

Author

Keywords

References

  • Fouad Ibn-Majdoub-Hassani, Combinatoire de polyominos et des tableaux décalés oscillants, Thèse de Doctorat. Laboratoire de Recherche en Informatique, Université Paris-Sud XI, France.
  • Alain Denise, Christoph Durr, and Fouad Ibn-Majdoub-Hassani, Enumération et génération aléatoire de polyominos convexes en réseau hexagonal (French) [enumeration and random generation of convex polyominoes in the honeycomb lattice]. In Proceedings of 9th Conference on Formal Power Series and Algebraic Combinatorics, pages 222-234, 1997.

Programs

  • Mathematica
    CoefficientList[Series[x^3*((1-2*x)*(-3+x+3*x^2+2*x^3)+(1-x-x^2)*(1-4*x^2)^(1/2))/(2*(1+x)*(1-2*x)*(1-x-x^2)*(-1+x+2*x^2+x^3)),{x,0,36}],x] (* Stefano Spezia, Oct 28 2023 *)

Formula

G.f.: x^3*((1-2*x)*(-3+x+3*x^2+2*x^3)+(1-x-x^2)*(1-4*x^2)^(1/2))/(2*(1+x)*(1-2*x)*(1-x-x^2)*(-1+x+2*x^2+x^3)).

Extensions

More terms from James Sellers, Mar 01 2000