cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053091 F^3-convex polyominoes on the honeycomb lattice by number of cells.

Original entry on oeis.org

1, 3, 5, 6, 9, 11, 10, 15, 18, 14, 21, 23, 18, 30, 29, 21, 33, 35, 31, 39, 41, 30, 42, 54, 35, 51, 53, 38, 66, 54, 42, 63, 65, 60, 69, 70, 43, 75, 90, 54, 81, 83, 63, 93, 89, 62, 90, 95, 84, 99, 90, 77, 105, 126, 74, 111, 113, 60, 138, 119, 91, 126, 125, 108
Offset: 1

Views

Author

Keywords

Comments

The polyominoes are counted up to translations but not rotations and reflections. Thus, the unique domino with two cells is counted three times for its three orientations. - Michael Somos, Jun 21 2012

Examples

			x + 3*x^2 + 5*x^3 + 6*x^4 + 9*x^5 + 11*x^6 + 10*x^7 + 15*x^8 + 18*x^9 + ...
+---+
| o | a(1) = 1
+---------------+
| o o | o  |  o | a(2) = 3
|     |  o | o  |
+-------------------------------+
|  o  | o o |       | o   |   o |
| o o |  o  | o o o |  o  |  o  | a(3) = 5
|     |     |       |   o | o   |
+-------------------------------------------+
|         | o    |    o |  o  |      |      |
| o o o o |  o   |   o  | o o |  o o | o o  | a(4) = 6
|         |   o  |  o   |  o  | o o  |  o o |
|         |    o | o    |     |      |      |
+-------------------------------------------+
- _Michael Somos_, Jun 21 2012
		

References

  • Fouad Ibn-Majdoub-Hassani. Combinatoire de polyominos et des tableaux decales oscillants. These de Doctorat. Laboratoire de Recherche en Informatique, Universite Paris-Sud XI, France.
  • Alain Denise, Christoph Durr and Fouad Ibn-Majdoub-Hassani. Enumeration et generation aleatoire de polyominos convexes en reseau hexagonal (French) [enumeration and random generation of convex polyominoes in the honeycomb lattice]. In Proceedings of 9th Conference on Formal Power Series and Algebraic Combinatorics, pages 222-234, 1997.

Programs

  • PARI
    {a(n) = local(m = 4*n); if( n<1, 0, (-1)^n / 2 * polcoeff( sum( k=1, m, k * kronecker( 2, k) * if( k%4 == 3, x^k, x^(3*k)) / (1 + x^(4*k)), O(x^m)), m - 1))} /* Michael Somos, Jun 20 2012 */
    
  • PARI
    {a(n) = if( n<1, 0, polcoeff( sum( i=1, n, x^i * (1 + x^i) / (1 - x^i) * ( sum( k=1, i, x^((i - k) * (i + k - 1)/2), x * O(x^(n - i))))^2 ), n))} /* Michael Somos, Jun 21 2012 */

Formula

Expansion of F^3(1, 1, q, 1) in powers of q where F^3(x, y, q, t) is the generating function defined in the FPSAC97 article. - Michael Somos, Jun 20 2012
G.f.: sum_{n >= 1} sum{d|n} b_d^2 * x^d * (1 + sign(n-d)), where b_0 = 0 and
b_i = x^binomial(i, 2) * sum_{k=1}^{i} x^(-binomial(i, 2)) for i >= 1 [corrected by Michael Somos, Jun 21 2012]