A053100 a(n) = ((6*n+7)(!^6))/7, related to A008542 ((6*n+1)(!^6) sextic, or 6-factorials).
1, 13, 247, 6175, 191425, 7082725, 304557175, 14923301575, 820781586625, 50067676784125, 3354534344536375, 244881007151155375, 19345599564941274625, 1644375963020008343125, 149638212634820759224375
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..344
Crossrefs
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-6*x)^(13/6))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018 -
Mathematica
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 12, 5!, 6}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *) With[{nn=20},CoefficientList[Series[1/(1-6x)^(13/6),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Apr 20 2015 *)
-
PARI
x='x+O('x^30); Vec(serlaplace(1/(1-6*x)^(13/6))) \\ G. C. Greubel, Aug 15 2018
Formula
a(n) = ((6*n+7)(!^6))/7(!^6) = A008542(n+2)/7.
E.g.f.: 1/(1-6*x)^(13/6).
Comments