A053116 a(n) = ((9*n+10)(!^9))/10, related to A045756 ((9*n+1)(!^9) 9-factorials).
1, 19, 532, 19684, 905464, 49800520, 3187233280, 232668029440, 19078778414080, 1736168835681280, 173616883568128000, 18924240308925952000, 2233060356453262336000, 283598665269564316672000
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..327
Programs
-
Magma
m:=25; R
:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( 1/(1 - 9*x)^(19/9))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 26 2018 -
Mathematica
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 18, 3*5!, 9}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *) With[{nmax = 50}, CoefficientList[Series[1/(1 - 9*x)^(19/9), {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Aug 26 2018 *)
-
PARI
x='x+O('x^25); Vec(serlaplace(1/(1 - 9*x)^(19/9))) \\ G. C. Greubel, Aug 26 2018
Formula
a(n) = ((9*n+10)(!^9))/10(!^9) = A045756(n+2)/10.
E.g.f.: 1/(1-9*x)^(19/9).
Comments