cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053117 Triangle read by rows of coefficients of Chebyshev's U(n,x) polynomials (exponents in increasing order).

Original entry on oeis.org

1, 0, 2, -1, 0, 4, 0, -4, 0, 8, 1, 0, -12, 0, 16, 0, 6, 0, -32, 0, 32, -1, 0, 24, 0, -80, 0, 64, 0, -8, 0, 80, 0, -192, 0, 128, 1, 0, -40, 0, 240, 0, -448, 0, 256, 0, 10, 0, -160, 0, 672, 0, -1024, 0, 512, -1, 0, 60, 0, -560, 0, 1792, 0, -2304, 0, 1024, 0, -12, 0, 280, 0, -1792, 0, 4608, 0, -5120, 0, 2048, 1, 0, -84, 0, 1120, 0, -5376, 0, 11520, 0, -11264, 0, 4096
Offset: 0

Views

Author

Keywords

Comments

G.f. for row polynomials U(n,x) (signed triangle): 1/(1-2*x*z+z^2). Unsigned triangle |a(n,m)| has Fibonacci polynomials F(n+1,2*x) as row polynomials with g.f. 1/(1-2*x*z-z^2).
Row sums (unsigned triangle) A000129(n+1) (Pell). Row sums (signed triangle) A000027(n+1) (natural numbers).
The o.g.f. for the Legendre polynomials L(n,x) is 1 / sqrt(1- 2x*z + z^2), and squaring it gives the o.g.f. of this entry, so Sum_{k=0..n} L(k,x) L(n-k,x) = U(n,x). This reduces to U(n,x) = L(n/2,x)^2 + 2*Sum_{k=0...n/2-1} L(k,x) L(n-k,x) for n even and U(n,x) = 2*Sum_{k=0..(n-1)/2} L(k,x) L(n-k.x) for odd n. (Cf. also Allouche et al.) For a connection through the Legendre polynomials to elliptic curves and modular forms, see the MathOverflow question below. For the normalized Legendre polynomials, see A100258. (Cf. A097610 with h1 = -2x and h2 = 1, A207538, A099089 and A133156.) - Tom Copeland, Feb 04 2016
The compositional inverse of the shifted o.g.f. x / (1 + 2xz + z^2) for differently signed row polynomials of this entry is the shifted o.g.f. of A121448. The unsigned, non-vanishing antidiagonals (top to bottom) of this triangle are the rows of A038207. - Tom Copeland, Feb 08 2016

Examples

			Triangle begins:
   1;
   0,  2;
  -1,  0,   4;
   0, -4,   0, 8;
   1,  0, -12, 0, 16;
  ...
E.g., fourth row (n=3) {0,-4,0,8} corresponds to polynomial U(3,x) = -4*x + 8*x^3.
		

References

  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 22, page 196.

Crossrefs

Programs

  • Julia
    using Nemo
    function A053117Row(n)
        R, x = PolynomialRing(ZZ, "x")
        p = chebyshev_u(n, x)
        [coeff(p, j) for j in 0:n] end
    for n in 0:6 A053117Row(n) |> println end # Peter Luschny, Mar 13 2018
  • Maple
    seq(seq(coeff(orthopoly[U](n,x),x,j),j=0..n),n=0..16); # Robert Israel, Feb 09 2016
  • Mathematica
    Flatten[ Table[ CoefficientList[ ChebyshevU[n, x], x], {n, 0, 12}]](* Jean-François Alcover, Nov 24 2011 *)
  • PARI
    T(n, k) = polcoeff(polchebyshev(n,2), k); \\ Michel Marcus, Feb 10 2016
    

Formula

a(n, m) = (2^m)*A049310(n,m).
a(n, m) := 0 if n
If n and k are of the same parity then a(n,k)=(-1)^((n-k)/2)*sum(binomial((n+k)/2,i)*binomial((n+k)/2-i,(n-k)/2),i=0..k) and a(n,k)=0 otherwise. - Milan Janjic, Apr 13 2008