A053117 Triangle read by rows of coefficients of Chebyshev's U(n,x) polynomials (exponents in increasing order).
1, 0, 2, -1, 0, 4, 0, -4, 0, 8, 1, 0, -12, 0, 16, 0, 6, 0, -32, 0, 32, -1, 0, 24, 0, -80, 0, 64, 0, -8, 0, 80, 0, -192, 0, 128, 1, 0, -40, 0, 240, 0, -448, 0, 256, 0, 10, 0, -160, 0, 672, 0, -1024, 0, 512, -1, 0, 60, 0, -560, 0, 1792, 0, -2304, 0, 1024, 0, -12, 0, 280, 0, -1792, 0, 4608, 0, -5120, 0, 2048, 1, 0, -84, 0, 1120, 0, -5376, 0, 11520, 0, -11264, 0, 4096
Offset: 0
Examples
Triangle begins: 1; 0, 2; -1, 0, 4; 0, -4, 0, 8; 1, 0, -12, 0, 16; ... E.g., fourth row (n=3) {0,-4,0,8} corresponds to polynomial U(3,x) = -4*x + 8*x^3.
References
- Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 22, page 196.
Links
- T. D. Noe, Rows n=0..100 of triangle, flattened
- J.-P. Allouche and G. Skordev, Schur congruences, Carlitz sequences of polynomials and automaticity, Discrete Mathematics, Vol. 214, Issue 1-3, 21 March 2000, pp. 21-49.
- Paul Barry and A. Hennessy, Meixner-Type Results for Riordan Arrays and Associated Integer Sequences, J. Int. Seq. 13 (2010) # 10.9.4, section 5.
- P. Damianou, On the characteristic polynomials of Cartan matrices and Chebyshev polynomials, arXiv preprint arXiv:1110.6620 [math.RT], 2014 (p. 10). - From _Tom Copeland_, Oct 11 2014
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- MathOverflow, Geometric picture of invariant differential of an elliptic curve, Dec 4 2011.
- Valentin Ovsienko, Towards quantized complex numbers: q-deformed Gaussian integers and the Picard group, arXiv:2103.10800 [math.QA], 2021.
- R. Pemantle and M. C. Wilson, Asymptotics of multivariate sequences, I: smooth points of the singular variety, arXiv:math/0003192 [math.CO], 2000.
- A. Sapounakis, I. Tasoulas, and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
- Index entries for sequences related to Chebyshev polynomials.
Crossrefs
Programs
-
Julia
using Nemo function A053117Row(n) R, x = PolynomialRing(ZZ, "x") p = chebyshev_u(n, x) [coeff(p, j) for j in 0:n] end for n in 0:6 A053117Row(n) |> println end # Peter Luschny, Mar 13 2018
-
Maple
seq(seq(coeff(orthopoly[U](n,x),x,j),j=0..n),n=0..16); # Robert Israel, Feb 09 2016
-
Mathematica
Flatten[ Table[ CoefficientList[ ChebyshevU[n, x], x], {n, 0, 12}]](* Jean-François Alcover, Nov 24 2011 *)
-
PARI
T(n, k) = polcoeff(polchebyshev(n,2), k); \\ Michel Marcus, Feb 10 2016
Formula
a(n, m) = (2^m)*A049310(n,m).
a(n, m) := 0 if n
If n and k are of the same parity then a(n,k)=(-1)^((n-k)/2)*sum(binomial((n+k)/2,i)*binomial((n+k)/2-i,(n-k)/2),i=0..k) and a(n,k)=0 otherwise. - Milan Janjic, Apr 13 2008
Comments