cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053119 Triangle of coefficients of Chebyshev's S(n,x) polynomials (exponents in decreasing order).

Original entry on oeis.org

1, 1, 0, 1, 0, -1, 1, 0, -2, 0, 1, 0, -3, 0, 1, 1, 0, -4, 0, 3, 0, 1, 0, -5, 0, 6, 0, -1, 1, 0, -6, 0, 10, 0, -4, 0, 1, 0, -7, 0, 15, 0, -10, 0, 1, 1, 0, -8, 0, 21, 0, -20, 0, 5, 0, 1, 0, -9, 0, 28, 0, -35, 0, 15, 0, -1, 1, 0, -10, 0, 36, 0, -56, 0, 35, 0, -6, 0, 1, 0, -11, 0, 45, 0, -84, 0, 70, 0, -21, 0, 1
Offset: 0

Views

Author

Keywords

Comments

These polynomials also give the determinant of the tridiagonal matrix having x on the diagonal and -1 next to these x. - M. F. Hasler, Oct 15 2019
The polynomial S(n,x) is the character of the irreducible (n+1) dimensional representation of the Lie algebra sl_2 when x is the character of irreducible 2-dimesional representation. - Leonid Bedratyuk, Oct 28 2023

Examples

			The triangle begins:
n\m 0  1   2  3   4  5   6  7   8  9  10 ...
0:  1
1:  1  0
2:  1  0  -1
3:  1  0  -2  0
4:  1  0  -3  0   1
5:  1  0  -4  0   3  0
6:  1  0  -5  0   6  0  -1
7:  1  0  -6  0  10  0  -4  0
8:  1  0  -7  0  15  0 -10  0   1
9:  1  0  -8  0  21  0 -20  0   5  0
10: 1  0  -9  0  28  0 -35  0  15  0  -1
... Reformatted. - _Wolfdieter Lang_, Dec 17 2013
E.g., fourth row (n=3) corresponds to polynomial S(3,x)= x^3-2*x.
Triangle of absolute values of coefficients (coefficients of Fibonacci polynomials) with exponents in increasing order begins:
[1]
[0, 1]
[1, 0, 1]
[0, 2, 0, 1]
[1, 0, 3, 0, 1]
[0, 3, 0, 4, 0, 1]
[1, 0, 6, 0, 5, 0, 1]
[0, 4, 0, 10, 0, 6, 0, 1]
[1, 0, 10, 0, 15, 0, 7, 0, 1]
[0, 5, 0, 20, 0, 21, 0, 8, 0, 1]
See A162515 for the Fibonacci polynomials with reversed row entries, starting there with row 1. - _Wolfdieter Lang_, Dec 16 2013
		

References

  • D. S. Mitrinovic, Analytic Inequalities, Springer-Verlag, 1970; p. 232, Sect. 3.3.38.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.

Crossrefs

Row sums give A000045. Reflection of A049310.
Cf. A162515. - Wolfdieter Lang, Dec 16 2013

Programs

  • Maple
    A053119 := (n, k) -> if k::even then (-1)^binomial(k, 2)*binomial(n - k/2, k/2)
    else 0 fi: seq(seq(A053119(n, k), k = 0..n), n = 0..11); # Peter Luschny, Jul 20 2024
  • Mathematica
    ChebyshevS[n_, x_] := ChebyshevU[n, x/2]; Flatten[ Table[ Reverse[ CoefficientList[ ChebyshevS[n, x], x]], {n, 0, 12}]] (* Jean-François Alcover, Nov 25 2011 *)
  • PARI
    tabl(nn) = for (n=0, nn, print(Vec(polchebyshev(n, 2, x/2)))); \\ Michel Marcus, Jan 14 2016

Formula

a(n,m) = A049310(n,n-m).
G.f. for row polynomials S(n,x) (signed triangle): 1/(1-x*z+z^2).
Unsigned triangle |a(n,m)| has Fibonacci polynomials F(n+1,x) as row polynomials with G.f. 1/(1-x*z-z^2).
a(n, m) := 0 if n < m or m odd, else ((-1)^(3*m/2))*binomial(n-m/2, n-m); a(n, m) = a(n-1, m) - a(n-2, m-2), a(n, -2) := 0 =: a(n, -1), a(0, 0) = 1, a(n, m) = 0 if n < m or m odd.
G.f. for m-th column (signed triangle): (-1)^(3*m/2)*x^m/(1-x)^(m/2+1) if m >= 0 is even else 0.
Recurrence for the (unsigned) Fibonacci polynomials: F[1]=1, F[2]=x; for n>2, F[n] = x*F[n-1]+F[n-2].
a = 2*A192011 - 3*A192174. - Thomas Baruchel, Jun 02 2018
Recurrence for the polynomials S(n) = x S(n-1) - S(n-2); S(0) = 1, S(1) = x. - M. F. Hasler, Oct 15 2019