A128932 Define the Fibonacci polynomials by F[1] = 1, F[2] = x; for n > 2, F[n] = x*F[n-1] + F[n-2] (cf. A049310, A053119). Swamy's inequality implies that F[n] <= F[n]^2 <= G[n] = (x^2 + 1)^2*(x^2 + 2)^(n-3) for n >= 3 and x >= 1. The sequence gives a triangle of coefficients of G[n] - F[n] read by rows.
0, 0, 1, 0, 1, 2, -2, 5, -1, 4, 0, 1, 3, 0, 9, 0, 12, 0, 6, 0, 1, 8, -3, 28, -4, 38, -1, 25, 0, 8, 0, 1, 15, 0, 58, 0, 99, 0, 87, 0, 41, 0, 10, 0, 1, 32, -4, 144, -10, 272, -6, 280, -1, 170, 0, 61, 0, 12, 0, 1, 63, 0, 310, 0, 673, 0, 825, 0, 619, 0, 292, 0, 85, 0, 14, 0, 1
Offset: 3
Examples
Triangle T(n,k) (with rows n >= 3 and columns k = 0..2*n-2) begins: 0, 0, 1, 0, 1; 2, -2, 5, -1, 4, 0, 1; 3, 0, 9, 0, 12, 0, 6, 0, 1; 8, -3, 28, -4, 38, -1, 25, 0, 8, 0, 1; 15, 0, 58, 0, 99, 0, 87, 0, 41, 0, 10, 0, 1; ...
References
- Thomas Koshy, Fibonacci and Lucas numbers with Applications, Vol. 2, Wiley, 2019; see p. 33. [Vol. 1 was published in 2001.]
- D. S. Mitrinovic, Analytic Inequalities, Springer-Verlag, 1970; p. 232, Sect. 3.3.38.
Links
- Richard Guilfoyle, Comment to the solution of Problem E1846, Amer. Math. Monthly, 74(5), 1967, 593. [It is pointed out that the inequality is a special case of Hadamard's inequality.]
- M. N. S. Swamy, Problem E1846 proposed for solution, Amer. Math. Monthly, 73(1) (1966), 81.
- M. N. S. Swamy and R. E. Giudici, Solution to Problem E1846, Amer. Math. Monthly, 74(5), 1967, 592-593.
- M. N. S. Swamy and Joel Pitcain, Comment to Problem E1846, Amer. Math. Monthly, 75(3) (1968), 295. [It is pointed out that I^{n-1}*F[n](x) = U_{n-1}(I*x/2), where U_{n-1}(cos(t)) = sin(n*t)/sin(t) and I = sqrt(-1); Cf. A049310 and A053119, but with different notation.]
- Wikipedia, Fibonacci polynomials.
- Wikipedia, Hadamard's inequality.
Programs
-
PARI
lista(nn) = {my(f=vector(nn)); my(g=vector(nn)); my(h=vector(nn)); f[1]=1; f[2]=x; g[1]=0; g[2]=0; for(n=3, nn, g[n] = (x^2+1)^2*(x^2+2)^(n-3)); for(n=3, nn, f[n] = x*f[n-1]+f[n-2]); for(n=1, nn, h[n] = g[n]-f[n]); for(n=3, nn, for(k=0, 2*n-2, print1(polcoef(h[n], k, x), ",")); print(););} \\ Petros Hadjicostas, Jun 10 2020
Formula
From Petros Hadjicostas, Jun 10 2020: (Start)
T(n,0) = 2^(n-3) - (1 - (-1)^n)/2 = A166920(n-3) for n >= 3.
Extensions
Name edited by Petros Hadjicostas, Jun 10 2020
Comments