cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A128932 Define the Fibonacci polynomials by F[1] = 1, F[2] = x; for n > 2, F[n] = x*F[n-1] + F[n-2] (cf. A049310, A053119). Swamy's inequality implies that F[n] <= F[n]^2 <= G[n] = (x^2 + 1)^2*(x^2 + 2)^(n-3) for n >= 3 and x >= 1. The sequence gives a triangle of coefficients of G[n] - F[n] read by rows.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, -2, 5, -1, 4, 0, 1, 3, 0, 9, 0, 12, 0, 6, 0, 1, 8, -3, 28, -4, 38, -1, 25, 0, 8, 0, 1, 15, 0, 58, 0, 99, 0, 87, 0, 41, 0, 10, 0, 1, 32, -4, 144, -10, 272, -6, 280, -1, 170, 0, 61, 0, 12, 0, 1, 63, 0, 310, 0, 673, 0, 825, 0, 619, 0, 292, 0, 85, 0, 14, 0, 1
Offset: 3

Views

Author

N. J. A. Sloane, Apr 28 2007

Keywords

Comments

From Petros Hadjicostas, Jun 10 2020: (Start)
Swamy's (1966) inequality states that F[n]^2 <= G[n] for all real x and all integers n >= 3. Because F[n] >= 1 for all real x >= 1, we get F[n] <= G[n] for all integers n >= 3 and all real x >= 1.
Row n >= 3 of this irregular table gives the coefficients of the polynomial G[n] - F[n] (with exponents in increasing order). The degree of G[n] - F[n] is 2*n - 2, so row n >= 3 contains 2*n - 1 terms.
Guilfoyle (1967) notes that F[n] = det(A_n), where A_n is the (n-1) X (n-1) matrix [[x, -1, 0, 0, ..., 0, 0, 0], [1, x, -1, 0, ..., 0, 0, 0], [0, 1, x, -1, ..., 0, 0, 0], ..., [0, 0, 0, 0, ..., 1, x, -1], [0, 0, 0, 0, ..., 0, 1, x]], and Swamy's original inequality follows from Hadamard's inequality.
Koshy (2019) writes Swamy's original inequality in the form x^(n-3)*F[n]^2 <= F[3]^2*F[4]^(n-3) for x >= 1, and gives a counterpart inequality for Lucas polynomials. Notice, however, that the original form of Swamy's inequality is true for all real x. (End)

Examples

			Triangle T(n,k) (with rows n >= 3 and columns k = 0..2*n-2) begins:
   0,  0,  1,  0,  1;
   2, -2,  5, -1,  4,  0,  1;
   3,  0,  9,  0, 12,  0,  6, 0,  1;
   8, -3, 28, -4, 38, -1, 25, 0,  8, 0,  1;
  15,  0, 58,  0, 99,  0, 87, 0, 41, 0, 10, 0, 1;
  ...
		

References

  • Thomas Koshy, Fibonacci and Lucas numbers with Applications, Vol. 2, Wiley, 2019; see p. 33. [Vol. 1 was published in 2001.]
  • D. S. Mitrinovic, Analytic Inequalities, Springer-Verlag, 1970; p. 232, Sect. 3.3.38.

Crossrefs

Programs

  • PARI
    lista(nn) = {my(f=vector(nn)); my(g=vector(nn)); my(h=vector(nn)); f[1]=1; f[2]=x; g[1]=0; g[2]=0; for(n=3, nn, g[n] = (x^2+1)^2*(x^2+2)^(n-3)); for(n=3, nn, f[n] = x*f[n-1]+f[n-2]); for(n=1, nn, h[n] = g[n]-f[n]); for(n=3, nn, for(k=0, 2*n-2, print1(polcoef(h[n], k, x), ",")); print(););} \\ Petros Hadjicostas, Jun 10 2020

Formula

From Petros Hadjicostas, Jun 10 2020: (Start)
T(n,0) = 2^(n-3) - (1 - (-1)^n)/2 = A166920(n-3) for n >= 3.
Sum_{k=0}^{2*n-2} T(n,k) = 4*3^(n-3) - Fib(n) = A003946(n-2) - A000045(n) for n >= 3. (End)

Extensions

Name edited by Petros Hadjicostas, Jun 10 2020

A335444 Define the Fibonacci polynomials by F[1] = 1, F[2] = x; for n > 2, F[n] = x*F[n-1] + F[n-2] (cf. A049310, A053119). Swamy's inequality states that F[n]^2 <= G[n] = (x^2 + 1)^2*(x^2 + 2)^(n-3) for all n >= 3 and all real x. The sequence gives a triangle of the coefficients of the even exponents of G[n] - F[n]^2 read by rows.

Original entry on oeis.org

0, 2, 1, 3, 6, 2, 8, 19, 14, 3, 15, 52, 58, 26, 4, 32, 128, 192, 132, 42, 5, 63, 300, 558, 518, 253, 62, 6, 128, 679, 1496, 1742, 1152, 433, 86, 7, 255, 1506, 3801, 5294, 4413, 2248, 684, 114, 8, 512, 3292, 9308, 14999, 15040, 9680, 3992, 1018, 146, 9
Offset: 3

Views

Author

Petros Hadjicostas, Jun 10 2020

Keywords

Comments

Swamy's (1966) inequality states that F[n]^2 <= G[n] for all real x and all integers n >= 3.
Row n >= 3 of this irregular table gives the coefficients of the even powers of the polynomial G[n] - F[n]^2 (with exponents in increasing order). The coefficients of the odd powers are zero, and they are thus omitted. The degree of G[n] - F[n]^2 is 2*n - 6, so row n >= 3 contains n - 2 terms.
To prove that the degree of G[n] - F[n]^2 is 2*n - 6, note that the first few terms of G[n] are x^(2*n-2) + 2*(n-2)*x^(2*n-4) + (2*n^2 - 10*n + 13)*x^(2*n-6) + ... while the first few terms of F[n]^2 are x^(2*n-2) + 2*(n-2)*x^(2*n-4) + (2*n^2 - 11*n + 16)*x^(2*n-6) + ..., so the leading term of the polynomial G[n] - F[n]^2 is (n-3)*x^(2*n-6).
Guilfoyle (1967) notes that F[n] = det(A_n), where A_n is the (n-1) X (n-1) matrix [[x, -1, 0, 0, ..., 0, 0, 0], [1, x, -1, 0, ..., 0, 0, 0], [0, 1, x, -1, ..., 0, 0, 0], ..., [0, 0, 0, 0, ..., 1, x, -1], [0, 0, 0, 0, ..., 0, 1, x]], and Swamy's original inequality follows from Hadamard's inequality.
Koshy (2019) writes Swamy's original inequality in the form x^(n-3)*F[n]^2 <= F[3]^2*F[4]^(n-3) for x >= 1, and gives a counterpart inequality for Lucas polynomials. Notice, however, that the original form of Swamy's inequality is true for all real x.

Examples

			Triangle T(n,k) (with rows n >= 3 and columns k = 0..n-3) begins:
   0;
   2,   1;
   3,   6,   2;
   8,  19,  14,   3;
  15,  52,  58,  26,  4;
  32, 128, 192, 132, 42, 5;
  ...
		

References

  • Thomas Koshy, Fibonacci and Lucas numbers with Applications, Vol. 2, Wiley, 2019; see p. 33. [Vol. 1 was published in 2001.]
  • D. S. Mitrinovic, Analytic Inequalities, Springer-Verlag, 1970; see p. 232, Sect. 3.3.38.

Crossrefs

Programs

  • PARI
    lista(nn) = {my(f=vector(nn)); my(g=vector(nn)); my(h=vector(nn)); f[1]=1; f[2]=x; g[1]=0; g[2]=0; for(n=3, nn, g[n] = (x^2+1)^2*(x^2+2)^(n-3)); for(n=3, nn, f[n] = x*f[n-1]+f[n-2]); for(n=1, nn, h[n] = g[n]-f[n]^2); for(n=3, nn, for(k=0, n-3, print1(polcoef(h[n], 2*k, x), ", ")); print(); ); }

Formula

T(n,0) = 2^(n-3) - (1 - (-1)^n)/2 = A166920(n-3) for n >= 3.
T(n,1) = 2^(n-4)*(n + 1) - floor(n/2)*ceiling(n/2) = A045623(n-2) - A002620(n) for n >= 4.
T(n, n-4) = 2*(n^2 - 7*n + 13) = A051890(n-3) for n >= 4.
T(n, n-3) = n - 3 for n >= 3.

A049310 Triangle of coefficients of Chebyshev's S(n,x) := U(n,x/2) polynomials (exponents in increasing order).

Original entry on oeis.org

1, 0, 1, -1, 0, 1, 0, -2, 0, 1, 1, 0, -3, 0, 1, 0, 3, 0, -4, 0, 1, -1, 0, 6, 0, -5, 0, 1, 0, -4, 0, 10, 0, -6, 0, 1, 1, 0, -10, 0, 15, 0, -7, 0, 1, 0, 5, 0, -20, 0, 21, 0, -8, 0, 1, -1, 0, 15, 0, -35, 0, 28, 0, -9, 0, 1, 0, -6, 0, 35, 0, -56, 0, 36, 0, -10, 0, 1, 1, 0, -21, 0, 70, 0, -84, 0
Offset: 0

Views

Author

Keywords

Comments

G.f. for row polynomials S(n,x) (signed triangle): 1/(1-x*z+z^2). Unsigned triangle |a(n,m)| has Fibonacci polynomials F(n+1,x) as row polynomials with g.f. 1/(1-x*z-z^2). |a(n,m)| triangle has rows of Pascal's triangle A007318 in the even-numbered diagonals (odd-numbered ones have only 0's).
Row sums (unsigned triangle) A000045(n+1) (Fibonacci). Row sums (signed triangle) S(n,1) sequence = periodic(1,1,0,-1,-1,0) = A010892.
Alternating row sums A049347(n) = S(n,-1) = periodic(1,-1,0). - Wolfdieter Lang, Nov 04 2011
S(n,x) is the characteristic polynomial of the adjacency matrix of the n-path. - Michael Somos, Jun 24 2002
S(n,x) is also the matching polynomial of the n-path. - Eric W. Weisstein, Apr 10 2017
|T(n,k)| = number of compositions of n+1 into k+1 odd parts. Example: |T(7,3)| = 10 because we have (1,1,3,3), (1,3,1,3), (1,3,3,1), (3,1,1,3), (3,1,3,1), (3,3,1,1), (1,1,1,5), (1,1,5,1), (1,5,1,1) and (5,1,1,1). - Emeric Deutsch, Apr 09 2005
S(n,x)= R(n,x) + S(n-2,x), n >= 2, S(-1,x)=0, S(0,x)=1, R(n,x):=2*T(n,x/2) = Sum_{m=0..n} A127672(n,m)*x^m (monic integer Chebyshev T-Polynomials). This is the rewritten so-called trace of the transfer matrix formula for the T-polynomials. - Wolfdieter Lang, Dec 02 2010
In a regular N-gon inscribed in a unit circle, the side length is d(N,1) = 2*sin(Pi/N). The length ratio R(N,k):=d(N,k)/d(N,1) for the (k-1)-th diagonal, with k from {2,3,...,floor(N/2)}, N >= 4, equals S(k-1,x) = sin(k*Pi/N)/sin(Pi/N) with x=rho(N):=R(N,2) = 2*cos(Pi/N). Example: N=7 (heptagon), rho=R(7,2), sigma:=R(N,3) = S(2,rho) = rho^2 - 1. Motivated by the quoted paper by P. Steinbach. - Wolfdieter Lang, Dec 02 2010
From Wolfdieter Lang, Jul 12 2011: (Start)
In q- or basic analysis, q-numbers are [n]_q := S(n-1,q+1/q) = (q^n-(1/q)^n)/(q-1/q), with the row polynomials S(n,x), n >= 0.
The zeros of the row polynomials S(n-1,x) are (from those of Chebyshev U-polynomials):
x(n-1;k) = +- t(k,rho(n)), k = 1..ceiling((n-1)/2), n >= 2, with t(n,x) the row polynomials of A127672 and rho(n):= 2*cos(Pi/n). The simple vanishing zero for even n appears here as +0 and -0.
Factorization of the row polynomials S(n-1,x), x >= 1, in terms of the minimal polynomials of cos(2 Pi/2), called Psi(n,x), with coefficients given by A181875/A181876:
S(n-1,x) = (2^(n-1))*Product_{n>=1}(Psi(d,x/2), 2 < d | 2n).
(From the rewritten eq. (3) of the Watkins and Zeitlin reference, given under A181872.) [See the W. Lang ArXiv link, Proposition 9, eq. (62). - Wolfdieter Lang, Apr 14 2018]
(End)
The discriminants of the S(n,x) polynomials are found in A127670. - Wolfdieter Lang, Aug 03 2011
This is an example for a subclass of Riordan convolution arrays (lower triangular matrices) called Bell arrays. See the L. W. Shapiro et al. reference under A007318. If a Riordan array is named (G(z),F(z)) with F(z)=z*Fhat(z), the o.g.f. for the row polynomials is G(z)/(1-x*z*Fhat(z)), and it becomes a Bell array if G(z)=Fhat(z). For the present Bell type triangle G(z)=1/(1+z^2) (see the o.g.f. comment above). This leads to the o.g.f. for the column no. k, k >= 0, x^k/(1+x^2)^(k+1) (see the formula section), the one for the row sums and for the alternating row sums (see comments above). The Riordan (Bell) A- and Z-sequences (defined in a W. Lang link under A006232, with references) have o.g.f.s 1-x*c(x^2) and -x*c(x^2), with the o.g.f. of the Catalan numbers A000108. Together they lead to a recurrence given in the formula section. - Wolfdieter Lang, Nov 04 2011
The determinant of the N x N matrix S(N,[x[1], ..., x[N]]) with elements S(m-1,x[n]), for n, m = 1, 2, ..., N, and for any x[n], is identical with the determinant of V(N,[x[1], ..., x[N]]) with elements x[n]^(m-1) (a Vandermondian, which equals Product_{1 <= i < j<= N} (x[j] - x[i])). This is a special instance of a theorem valid for any N >= 1 and any monic polynomial system p(m,x), m>=0, with p(0,x) = 1. For this theorem see the Vein-Dale reference, p. 59. Thanks to L. Edson Jeffery for an email asking for a proof of the non-singularity of the matrix S(N,[x[1], ...., x[N]]) if and only if the x[j], j = 1..N, are pairwise distinct. - Wolfdieter Lang, Aug 26 2013
These S polynomials also appear in the context of modular forms. The rescaled Hecke operator T*n = n^((1-k)/2)*T_n acting on modular forms of weight k satisfies T*(p^n) = S(n, T*p), for each prime p and positive integer n. See the Koecher-Krieg reference, p. 223. - _Wolfdieter Lang, Jan 22 2016
For a shifted o.g.f. (mod signs), its compositional inverse, and connections to Motzkin and Fibonacci polynomials, non-crossing partitions and other combinatorial structures, see A097610. - Tom Copeland, Jan 23 2016
From M. Sinan Kul, Jan 30 2016; edited by Wolfdieter Lang, Jan 31 2016 and Feb 01 2016: (Start)
Solutions of the Diophantine equation u^2 + v^2 - k*u*v = 1 for integer k given by (u(k,n), v(k,n)) = (S(n,k), S(n-1,k)) because of the Cassini-Simson identity: S(n,x)^2 - S(n+1,x)*S(n-1, x) = 1, after use of the S-recurrence. Note that S(-n, x) = -S(-n-2, x), n >= 1, and the periodicity of some S(n, k) sequences.
Hence another way to obtain the row polynomials would be to take powers of the matrix [x, -1; 1,0]: S(n, x) = (([x, -1; 1, 0])^n)[1,1], n >= 0.
See also a Feb 01 2016 comment on A115139 for a well-known S(n, x) sum formula.
Then we have with the present T triangle
A039834(n) = -i^(n+1)*T(n-1, k) where i is the imaginary unit and n >= 0.
A051286(n) = Sum_{i=0..n} T(n,i)^2 (see the Philippe Deléham, Nov 21 2005 formula),
A181545(n) = Sum_{i=0..n+1} abs(T(n,i)^3),
A181546(n) = Sum_{i=0..n+1} T(n,i)^4,
A181547(n) = Sum_{i=0..n+1} abs(T(n,i)^5).
S(n, 0) = A056594(n), and for k = 1..10 the sequences S(n-1, k) with offset n = 0 are A128834, A001477, A001906, A001353, A004254, A001109, A004187, A001090, A018913, A004189.
(End)
For more on the Diophantine equation presented by Kul, see the Ismail paper. - Tom Copeland, Jan 31 2016
The o.g.f. for the Legendre polynomials L(n,x) is 1 / sqrt(1- 2x*z + z^2), and squaring it gives the o.g.f. of U(n,x), A053117, so Sum_{k=0..n} L(k,x/2) L(n-k,x/2) = S(n,x). This gives S(n,x) = L(n/2,x/2)^2 + 2*Sum_{k=0..n/2-1} L(k,x/2) L(n-k,x/2) for n even and S(n,x) = 2*Sum_{k=0..(n-1)/2} L(k,x/2) L(n-k,x/2) for odd n. For a connection to elliptic curves and modular forms, see A053117. For the normalized Legendre polynomials, see A100258. For other properties and relations to other polynomials, see Allouche et al. - Tom Copeland, Feb 04 2016
LG(x,h1,h2) = -log(1 - h1*x + h2*x^2) = Sum_{n>0} F(n,-h1,h2,0,..,0) x^n/n is a log series generator of the bivariate row polynomials of A127672 with A127672(0,0) = 0 and where F(n,b1,b2,..,bn) are the Faber polynomials of A263916. Exp(LG(x,h1,h2)) = 1 / (1 - h1*x + h2*x^2 ) is the o.g.f. of the bivariate row polynomials of this entry. - Tom Copeland, Feb 15 2016 (Instances of the bivariate o.g.f. for this entry are on pp. 5 and 18 of Sunada. - Tom Copeland, Jan 18 2021)
For distinct odd primes p and q the Legendre symbol can be written as Legendre(q,p) = Product_{k=1..P} S(q-1, 2*cos(2*Pi*k/p)), with P = (p-1)/2. See the Lemmermeyer reference, eq. (8.1) on p. 236. Using the zeros of S(q-1, x) (see above) one has S(q-1, x) = Product_{l=1..Q} (x^2 - (2*cos(Pi*l/q))^2), with Q = (q-1)/2. Thus S(q-1, 2*cos(2*Pi*k/p)) = ((-4)^Q)*Product_{l=1..Q} (sin^2(2*Pi*k/p) - sin^2(Pi*l/q)) = ((-4)^Q)*Product_{m=1..Q} (sin^2(2*Pi*k/p) - sin^2(2*Pi*m/q)). For the proof of the last equality see a W. Lang comment on the triangle A057059 for n = Q and an obvious function f. This leads to Eisenstein's proof of the quadratic reciprocity law Legendre(q,p) = ((-1)^(P*Q)) * Legendre(p,q), See the Lemmermeyer reference, pp. 236-237. - Wolfdieter Lang, Aug 28 2016
For connections to generalized Fibonacci polynomials, compare their generating function on p. 5 of the Amdeberhan et al. link with the o.g.f. given above for the bivariate row polynomials of this entry. - Tom Copeland, Jan 08 2017
The formula for Ramanujan's tau function (see A000594) for prime powers is tau(p^k) = p^(11*k/2)*S(k, p^(-11/2)*tau(p)) for k >= 1, and p = A000040(n), n >= 1. See the Hardy reference, p. 164, eqs. (10.3.4) and (10.3.6) rewritten in terms of S. - Wolfdieter Lang, Jan 27 2017
From Wolfdieter Lang, May 08 2017: (Start)
The number of zeros Z(n) of the S(n, x) polynomials in the open interval (-1,+1) is 2*b(n) for even n >= 0 and 1 + 2*b(n) for odd n >= 1, where b(n) = floor(n/2) - floor((n+1)/3). This b(n) is the number of integers k in the interval (n+1)/3 < k <= floor(n/2). See a comment on the zeros of S(n, x) above, and b(n) = A008615(n-2), n >= 0. The numbers Z(n) have been proposed (with a conjecture related to A008611) by Michel Lagneau, as the number of zeros of Fibonacci polynomials on the imaginary axis (-I,+I), with I=sqrt(-1). They are Z(n) = A008611(n-1), n >= 0, with A008611(-1) = 0. Also Z(n) = A194960(n-4), n >= 0. Proof using the A008611 version. A194960 follows from this.
In general the number of zeros Z(a;n) of S(n, x) for n >= 0 in the open interval (-a,+a) for a from the interval (0,2) (x >= 2 never has zeros, and a=0 is trivial: Z(0;n) = 0) is with b(a;n) = floor(n//2) - floor((n+1)*arccos(a/2)/Pi), as above Z(a;n) = 2*b(a;n) for even n >= 0 and 1 + 2*b(a;n) for odd n >= 1. For the closed interval [-a,+a] Z(0;n) = 1 and for a from (0,1) one uses for Z(a;n) the values b(a;n) = floor(n/2) - ceiling((n+1)*arccos(a/2)/Pi) + 1. (End)
The Riordan row polynomials S(n, x) (Chebyshev S) belong to the Boas-Buck class (see a comment and references in A046521), hence they satisfy the Boas-Buck identity: (E_x - n*1)*S(n, x) = (E_x + 1)*Sum_{p=0..n-1} (1 - (-1)^p)*(-1)^((p+1)/2)*S(n-1-p, x), for n >= 0, where E_x = x*d/dx (Euler operator). For the triangle T(n, k) this entails a recurrence for the sequence of column k, given in the formula section. - Wolfdieter Lang, Aug 11 2017
The e.g.f. E(x,t) := Sum_{n>=0} (t^n/n!)*S(n,x) for the row polynomials is obtained via inverse Laplace transformation from the above given o.g.f. as E(x,t) = ((1/xm)*exp(t/xm) - (1/xp)*exp(t/xp) )/(xp - xm) with xp = (x + sqrt(x^2-4))/2 and xm = (x - sqrt(x^2-4))/2. - Wolfdieter Lang, Nov 08 2017
From Wolfdieter Lang, Apr 12 2018: (Start)
Factorization of row polynomials S(n, x), for n >= 1, in terms of C polynomials (not Chebyshev C) with coefficients given in A187360. This is obtained from the factorization into Psi polynomials (see the Jul 12 2011 comment above) but written in terms of minimal polynomials of 2*cos(2*Pi/n) with coefficients in A232624:
S(2*k, x) = Product_{2 <= d | (2*k+1)} C(d, x)*(-1)^deg(d)*C(d, -x), with deg(d) = A055034(d) the degree of C(d, x).
S(2*k+1, x) = Product_{2 <= d | 2*(k+1)} C(d, x) * Product_{3 <= 2*d + 1 | (k+1)} (-1)^(deg(2*d+1))*C(2*d+1, -x).
Note that (-1)^(deg(2*d+1))*C(2*d+1, -x)*C(2*d+1, x) pairs always appear.
The number of C factors of S(2*k, x), for k >= 0, is 2*(tau(2*k+1) - 1) = 2*(A099774(k+1) - 1) = 2*A095374(k), and for S(2*k+1, x), for k >= 0, it is tau(2*(k+1)) + tau_{odd}(k+1) - 2 = A302707(k), with tau(2*k+1) = A099774(k+1), tau(n) = A000005 and tau(2*(k+1)) = A099777(k+1).
For the reverse problem, the factorization of C polynomials into S polynomials, see A255237. (End)
The S polynomials with general initial conditions S(a,b;n,x) = x*S(a,b;n-1,x) - S(a,b;n-2,x), for n >= 1, with S(a,b;-1,x) = a and S(a,b;0,x) = b are S(a,b;n,x) = b*S(n, x) - a*S(n-1, x), for n >= -1. Recall that S(-2, x) = -1 and S(-1, x) = 0. The o.g.f. is G(a,b;z,x) = (b - a*z)/(1 - x*z + z^2). - Wolfdieter Lang, Oct 18 2019
Also the convolution triangle of A101455. - Peter Luschny, Oct 06 2022
From Wolfdieter Lang, Apr 26 2023: (Start)
Multi-section of S-polynomials: S(m*n+k, x) = S(m+k, x)*S(n-1, R(m, x)) - S(k, x)*S(n-2, R(m, x)), with R(n, x) = S(n, x) - S(n-2, x) (see A127672), S(-2, x) = -1, and S(-1, x) = 0, for n >= 0, m >= 1, and k = 0, 1, ..., m-1.
O.g.f. of {S(m*n+k, y)}_{n>=0}: G(m,k,y,x) = (S(k, y) - (S(k, y)*R(m, y) - S(m+k, y))*x)/(1 - R(m,y)*x + x^2).
See eqs. (40) and (49), with r = x or y and s =-1, of the G. Detlefs and W. Lang link at A034807. (End)
S(n, x) for complex n and complex x: S(n, x) = ((-i/2)/sqrt(1 - (x/2)^2))*(q(x/2)*exp(+n*log(q(x/2))) - (1/q(x/2))*exp(-n*log(q(x/2)))), with q(x) = x + sqrt(1 - x^2)*i. Here log(z) = |z| + Arg(z)*i, with Arg(z) from [-Pi,+Pi) (principal branch). This satisfies the recurrence relation for S because it is derived from the Binet - de Moivre formula for S. Examples: S(n/m, 0) = cos((n/m)*Pi/4), for n >= 0 and m >= 1. S(n*i, 0) = (1/2)*(1 + exp(n*Pi))*exp(-(n/2)*Pi), for n >= 0. S(1+i, 2+i) = 0.6397424847... + 1.0355669490...*i. Thanks to Roberto Alfano for asking a question leading to this formula. - Wolfdieter Lang, Jun 05 2023
Lim_{n->oo} S(n, x)/S(n-1, x) = r(x) = (x - sqrt(x^2 -4))/2, for |x| >= 2. For x = +-2, this limit is +-1. - Wolfdieter Lang, Nov 15 2023

Examples

			The triangle T(n, k) begins:
  n\k  0  1   2   3   4   5   6    7   8   9  10  11
  0:   1
  1:   0  1
  2:  -1  0   1
  3:   0 -2   0   1
  4:   1  0  -3   0   1
  5:   0  3   0  -4   0   1
  6:  -1  0   6   0  -5   0   1
  7:   0 -4   0  10   0  -6   0    1
  8:   1  0 -10   0  15   0  -7    0   1
  9:   0  5   0 -20   0  21   0   -8   0   1
  10: -1  0  15   0 -35   0  28    0  -9   0   1
  11:  0 -6   0  35   0 -56   0   36   0 -10   0   1
  ... Reformatted and extended by _Wolfdieter Lang_, Oct 24 2012
For more rows see the link.
E.g., fourth row {0,-2,0,1} corresponds to polynomial S(3,x)= -2*x + x^3.
From _Wolfdieter Lang_, Jul 12 2011: (Start)
Zeros of S(3,x) with rho(4)= 2*cos(Pi/4) = sqrt(2):
  +- t(1,sqrt(2)) = +- sqrt(2) and
  +- t(2,sqrt(2)) = +- 0.
Factorization of S(3,x) in terms of Psi polynomials:
S(3,x) = (2^3)*Psi(4,x/2)*Psi(8,x/2) = x*(x^2-2).
(End)
From _Wolfdieter Lang_, Nov 04 2011: (Start)
A- and Z- sequence recurrence:
T(4,0) = - (C(0)*T(3,1) + C(1)*T(3,3)) = -(-2 + 1) = +1,
T(5,3) = -3 - 1*1 = -4.
(End)
Boas-Buck recurrence for column k = 2, n = 6: S(6, 2) = (3/4)*(0 - 2* S(4 ,2) + 0 + 2*S(2, 2)) = (3/4)*(-2*(-3) + 2) = 6. - _Wolfdieter Lang_, Aug 11 2017
From _Wolfdieter Lang_, Apr 12 2018: (Start)
Factorization into C polynomials (see the Apr 12 2018 comment):
S(4, x) = 1 - 3*x^2 + x^4 = (-1 + x + x^2)*(-1 - x + x^2) = (-C(5, -x)) * C(5, x); the number of factors is 2 = 2*A095374(2).
S(5, x) = 3*x - 4*x^3 + x^5 = x*(-1 + x)*(1 + x)*(-3 + x^2) = C(2, x)*C(3, x)*(-C(3, -x))*C(6, x); the number of factors is 4 = A302707(2). (End)
		

References

  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, p. 164.
  • Max Koecher and Aloys Krieg, Elliptische Funktionen und Modulformen, 2. Auflage, Springer, 2007, p. 223.
  • Franz Lemmermeyer, Reciprocity Laws. From Euler to Eisenstein, Springer, 2000.
  • D. S. Mitrinovic, Analytic Inequalities, Springer-Verlag, 1970; p. 232, Sect. 3.3.38.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990, pp. 60 - 61.
  • R. Vein and P. Dale, Determinants and Their Applications in Mathematical Physics, Springer, 1999.

Crossrefs

Cf. A000005, A000217, A000292, A000332, A000389, A001227, A007318, A008611, A008615, A101455, A010892, A011973, A053112 (without zeros), A053117, A053119 (reflection), A053121 (inverse triangle), A055034, A097610, A099774, A099777, A100258, A112552 (first column clipped), A127672, A168561 (absolute values), A187360. A194960, A232624, A255237.
Triangles of coefficients of Chebyshev's S(n,x+k) for k = 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5: A207824, A207823, A125662, A078812, A101950, A049310, A104562, A053122, A207815, A159764, A123967.

Programs

  • Magma
    A049310:= func< n,k | ((n+k) mod 2) eq 0 select (-1)^(Floor((n+k)/2)+k)*Binomial(Floor((n+k)/2), k) else 0 >;
    [A049310(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jul 25 2022
  • Maple
    A049310 := proc(n,k): binomial((n+k)/2,(n-k)/2)*cos(Pi*(n-k)/2)*(1+(-1)^(n-k))/2 end: seq(seq(A049310(n,k), k=0..n),n=0..11); # Johannes W. Meijer, Aug 08 2011
    # Uses function PMatrix from A357368. Adds a row above and a column to the left.
    PMatrix(10, n -> ifelse(irem(n, 2) = 0, 0, (-1)^iquo(n-1, 2))); # Peter Luschny, Oct 06 2022
  • Mathematica
    t[n_, k_] /; EvenQ[n+k] = ((-1)^((n+k)/2+k))*Binomial[(n+k)/2, k]; t[n_, k_] /; OddQ[n+k] = 0; Flatten[Table[t[n, k], {n, 0, 12}, {k, 0, n}]][[;; 86]] (* Jean-François Alcover, Jul 05 2011 *)
    Table[Coefficient[(-I)^n Fibonacci[n + 1, - I x], x, k], {n, 0, 10}, {k, 0, n}] //Flatten (* Clark Kimberling, Aug 02 2011; corrected by Eric W. Weisstein, Apr 06 2017 *)
    CoefficientList[ChebyshevU[Range[0, 10], -x/2], x] // Flatten (* Eric W. Weisstein, Apr 06 2017 *)
    CoefficientList[Table[(-I)^n Fibonacci[n + 1, -I x], {n, 0, 10}], x] // Flatten (* Eric W. Weisstein, Apr 06 2017 *)
  • PARI
    {T(n, k) = if( k<0 || k>n || (n + k)%2, 0, (-1)^((n + k)/2 + k) * binomial((n + k)/2, k))} /* Michael Somos, Jun 24 2002 */
    
  • SageMath
    @CachedFunction
    def A049310(n,k):
        if n< 0: return 0
        if n==0: return 1 if k == 0 else 0
        return A049310(n-1,k-1) - A049310(n-2,k)
    for n in (0..9): [A049310(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012
    

Formula

T(n,k) := 0 if n < k or n+k odd, otherwise ((-1)^((n+k)/2+k))*binomial((n+k)/2, k); T(n, k) = -T(n-2, k)+T(n-1, k-1), T(n, -1) := 0 =: T(-1, k), T(0, 0)=1, T(n, k)= 0 if n < k or n+k odd; g.f. k-th column: (1 / (1 + x^2)^(k + 1)) * x^k. - Michael Somos, Jun 24 2002
T(n,k) = binomial((n+k)/2, (n-k)/2)*cos(Pi*(n-k)/2)*(1+(-1)^(n-k))/2. - Paul Barry, Aug 28 2005
Sum_{k=0..n} T(n,k)^2 = A051286(n). - Philippe Deléham, Nov 21 2005
Recurrence for the (unsigned) Fibonacci polynomials: F(1)=1, F(2)=x; for n > 2, F(n) = x*F(n-1) + F(n-2).
From Wolfdieter Lang, Nov 04 2011: (Start)
The Riordan A- and Z-sequences, given in a comment above, lead together to the recurrence:
T(n,k) = 0 if n < k, if k=0 then T(0,0)=1 and
T(n,0)= -Sum_{i=0..floor((n-1)/2)} C(i)*T(n-1,2*i+1), otherwise T(n,k) = T(n-1,k-1) - Sum_{i=1..floor((n-k)/2)} C(i)*T(n-1,k-1+2*i), with the Catalan numbers C(n)=A000108(n).
(End)
The row polynomials satisfy also S(n,x) = 2*(T(n+2, x/2) - T(n, x/2))/(x^2-4) with the Chebyshev T-polynomials. Proof: Use the trace formula 2*T(n, x/2) = S(n, x) - S(n-2, x) (see the Dec 02 2010 comment above) and the S-recurrence several times. This is a formula which expresses the S- in terms of the T-polynomials. - Wolfdieter Lang, Aug 07 2014
From Tom Copeland, Dec 06 2015: (Start)
The non-vanishing, unsigned subdiagonals Diag_(2n) contain the elements D(n,k) = Sum_{j=0..k} D(n-1,j) = (k+1) (k+2) ... (k+n) / n! = binomial(n+k,n), so the o.g.f. for the subdiagonal is (1-x)^(-(n+1)). E.g., Diag_4 contains D(2,3) = D(1,0) + D(1,1) + D(1,2) + D(1,3) = 1 + 2 + 3 + 4 = 10 = binomial(5,2). Diag_4 is shifted A000217; Diag_6, shifted A000292: Diag_8, shifted A000332; and Diag_10, A000389.
The non-vanishing antidiagonals are signed rows of the Pascal triangle A007318.
For a reversed, unsigned version with the zeros removed, see A011973. (End)
The Boas-Buck recurrence (see a comment above) for the sequence of column k is: S(n, k) = ((k+1)/(n-k))*Sum_{p=0..n-1-k} (1 - (-1)^p)*(-1)^((p+1)/2) * S(n-1-p, k), for n > k >= 0 and input S(k, k) = 1. - Wolfdieter Lang, Aug 11 2017
The m-th row consecutive nonzero entries in order are (-1)^c*(c+b)!/c!b! with c = m/2, m/2-1, ..., 0 and b = m-2c if m is even and with c = (m-1)/2, (m-1)/2-1, ..., 0 with b = m-2c if m is odd. For the 8th row starting at a(36) the 5 consecutive nonzero entries in order are 1,-10,15,-7,1 given by c = 4,3,2,1,0 and b = 0,2,4,6,8. - Richard Turk, Aug 20 2017
O.g.f.: exp( Sum_{n >= 0} 2*T(n,x/2)*t^n/n ) = 1 + x*t + (-1 + x^2)*t^2 + (-2*x + x^3)*t^3 + (1 - 3*x^2 + x^4)*t^4 + ..., where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Aug 15 2022

A135929 Triangle read by rows: row n gives coefficients of polynomial P_n(x)= U_{n}(x,1) + 3 * U_{n-2}(x,1) where U is the Chebyshev polynomial of the second kind, in order of decreasing exponents.

Original entry on oeis.org

1, 1, 0, 1, 0, 2, 1, 0, 1, 0, 1, 0, 0, 0, -2, 1, 0, -1, 0, -3, 0, 1, 0, -2, 0, -3, 0, 2, 1, 0, -3, 0, -2, 0, 5, 0, 1, 0, -4, 0, 0, 0, 8, 0, -2, 1, 0, -5, 0, 3, 0, 10, 0, -7, 0, 1, 0, -6, 0, 7, 0, 10, 0, -15, 0, 2, 1, 0, -7, 0, 12, 0, 7, 0, -25, 0, 9, 0, 1, 0, -8, 0, 18, 0, 0, 0, -35, 0, 24, 0, -2
Offset: 0

Views

Author

N. J. A. Sloane, Mar 09 2008

Keywords

Comments

Take a(0)=-2 instead of 1. The recurrence begins immediately (at the third instead of the fourth polynomial). Companion: A192011(n). - Paul Curtz, Sep 20 2011

Examples

			The coefficients and polynomials are
  1;                                 1
  1, 0;                              x
  1, 0,  2;                          x^2 + 2
  1, 0,  1, 0;                       x^3 +   x
  1, 0,  0, 0, -2;                   x^4 - 2
  1, 0, -1, 0, -3, 0;                x^5 -   x^3 - 3*x
  1, 0, -2, 0, -3, 0,  2;            x^6 - 2*x^4 - 3*x^2 + 2
  1, 0, -3, 0, -2, 0,  5, 0;         x^7 - 3*x^5 - 2*x^3 + 5*x
  1, 0, -4, 0,  0, 0,  8, 0, -2;     x^8 - 4*x^6 + 8*x^2 - 2
  1, 0, -5, 0,  3, 0, 10, 0, -7, 0;  x^9 - 5*x^7 + 3*x^5 + 10*x^3 - 7*x
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972; see Chapter 22.

Crossrefs

Programs

  • Magma
    A053119:= func< n,k | (1/2)*(-1)^Floor(3*k/2)*(1+(-1)^k)*Binomial(n - Floor(k/2), n-k) >;
    A135929:= func< n,k | n eq 0 select 1 else A053119(n, k) + 3*A053119(n-2, k-2) >;
    [A135929(n,k): k in [0..n], n in [0..16]]; // G. C. Greubel, Apr 24 2023
    
  • Maple
    A135929 := proc(n, m) coeftayl( coeftayl( (1+3*t^2)/(1-x*t+t^2), t=0, n), x=0, n-m) ; end proc: seq(seq(A135929(n,m), m=0..n),n=0..14) ; # R. J. Mathar, Nov 03 2009
  • Mathematica
    p[0, ]= 1; p[1, x]:= x; p[2, x_]:= x^2+2; p[n_, x_]:= p[n, x] = x*p[n-1, x] - p[n-2, x]; row[n_]:= CoefficientList[p[n, x], x]; Table[row[n]//Reverse, {n, 0, 13}]//Flatten (* Jean-François Alcover, Nov 26 2012, after Paul Curtz's formula *)
    (* Second program *)
    p=1; q=2; t[, 0]=p; t[2, 2]=q; t[, ?OddQ]=0; t[n, k_] /; k > n = 0; t[n_ /; n >= 0, k_ /; k >= 0]:= t[n, k] = t[n-1, k] - t[n-2, k-2]; Table[t[n, k], {n, 0, 13}, {k, 0, n}]//Flatten (* Jean-François Alcover, Nov 27 2012, from recurrence *)
  • SageMath
    def A053119(n,k): return (-1)^(3*k/2)*((k+1)%2)*binomial(n-k/2, n-k)
    def A135929(n,k): return 1 if (n==0) else A053119(n, k) + 3*A053119(n-2, k-2)
    flatten([[A135929(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Apr 24 2023

Formula

G.f.: (1+3*t^2)/(1-x*t+t^2).
P_n(x) = U_{n}(x,1) + 3 * U_{n-2}(x,1) for n>=2. - Max Alekseyev, Dec 04 2009
P_n(x) = S_{n}(x) + 3*S_{n-2}(x), with Chebyshev Polynomials S_n(x) defined in A049310 and A053119. - R. J. Mathar, Dec 07 2009
P_0(x)=1, P_1(x)=x, P_2(x)=x^2+2, and P_n(x)= x*P_{n-1}(x) - P_{n-2}(x) for n>=3. - Paul Curtz, Aug 14 2011
From G. C. Greubel, Apr 24 2023: (Start)
T(n, k) = A053119(n, k) + 3*A053119(n-2, k-2), with T(0,0) = 1.
Sum_{k=0..n} T(n, k) = A138034(n). (End)

Extensions

Extended by R. J. Mathar, Nov 03 2009

A162515 Triangle of coefficients of polynomials defined by Binet form: P(n,x) = (U^n - L^n)/d, where U = (x + d)/2, L = (x - d)/2, d = sqrt(x^2 + 4).

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 3, 0, 1, 1, 0, 4, 0, 3, 0, 1, 0, 5, 0, 6, 0, 1, 1, 0, 6, 0, 10, 0, 4, 0, 1, 0, 7, 0, 15, 0, 10, 0, 1, 1, 0, 8, 0, 21, 0, 20, 0, 5, 0, 1, 0, 9, 0, 28, 0, 35, 0, 15, 0, 1, 1, 0, 10, 0, 36, 0, 56, 0, 35, 0, 6, 0, 1, 0, 11, 0, 45, 0, 84, 0, 70, 0, 21, 0, 1
Offset: 0

Views

Author

Clark Kimberling, Jul 05 2009

Keywords

Comments

Row sums 0,1,1,2,3,5,... are the Fibonacci numbers, A000045.
Note that the coefficients are given in decreasing order. - M. F. Hasler, Dec 07 2011
Essentially a mirror image of A168561. - Philippe Deléham, Dec 08 2013

Examples

			Polynomial expansion:
  0;
  1;
  x;
  x^2 + 1;
  x^3 + 2*x;
  x^4 + 3*x^2 + 1;
First rows:
  0;
  1;
  1, 0;
  1, 0, 1;
  1, 0, 2, 0;
  1, 0, 3, 0, 1;
  1, 0, 4, 0, 3, 0;
Row 6 matches P(6,x)=x^5 + 4*x^3 + 3*x.
		

Crossrefs

Programs

  • GAP
    T:= function(n,k)
        if (k mod 2)=0 then return Binomial(n- k/2, k/2);
        else return 0;
        fi; end;
    Concatenation([0], Flat(List([0..15], n-> List([0..n], k-> T(n,k) ))) ); # G. C. Greubel, Jan 01 2020
  • Magma
    function T(n,k)
      if (k mod 2) eq 0 then return Round( Gamma(n-k/2+1)/(Gamma(k/2+1)*Gamma(n-k+1)));
      else return 0;
      end if; return T; end function;
    [0] cat [T(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jan 01 2020
    
  • Maple
    0, seq(seq(`if`(`mod`(k,2)=0, binomial(n-k/2, k/2), 0), k = 0..n), n = 0..15); # G. C. Greubel, Jan 01 2020
  • Mathematica
    Join[{0}, Table[If[EvenQ[k], Binomial[n-k/2, k/2], 0], {n,0,15}, {k,0,n} ]//Flatten] (* G. C. Greubel, Jan 01 2020 *)
  • PARI
    row(n,d=sqrt(1+x^2/4+O(x^n))) = Vec(if(n,Pol(((x/2+d)^n-(x/2-d)^n)/d)>>1)) \\ M. F. Hasler, Dec 07 2011, edited Jul 05 2021
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k%2==0): return binomial(n-k/2, k/2)
        else: return 0
    [0]+flatten([[T(n, k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jan 01 2020
    

Formula

P(n,x) = x*P(n-1, x) + P(n-2, x), where P(0,x)=0 and P(1,x)=1.
T(n,k) = T(n-1, k) + T(n-2, k-2) for n>=2. - Philippe Deléham, Dec 08 2013

A374439 Triangle read by rows: the coefficients of the Lucas-Fibonacci polynomials. T(n, k) = T(n - 1, k) + T(n - 2, k - 2) with initial values T(n, k) = k + 1 for k < 2.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 2, 3, 4, 1, 1, 2, 4, 6, 3, 2, 1, 2, 5, 8, 6, 6, 1, 1, 2, 6, 10, 10, 12, 4, 2, 1, 2, 7, 12, 15, 20, 10, 8, 1, 1, 2, 8, 14, 21, 30, 20, 20, 5, 2, 1, 2, 9, 16, 28, 42, 35, 40, 15, 10, 1, 1, 2, 10, 18, 36, 56, 56, 70, 35, 30, 6, 2
Offset: 0

Views

Author

Peter Luschny, Jul 22 2024

Keywords

Comments

There are several versions of Lucas and Fibonacci polynomials in this database. Our naming follows the convention of calling polynomials after the values of the polynomials at x = 1. This assumes a regular sequence of polynomials, that is, a sequence of polynomials where degree(p(n)) = n. This view makes the coefficients of the polynomials (the terms of a row) a refinement of the values at the unity.
A remarkable property of the polynomials under consideration is that they are dual in this respect. This means they give the Lucas numbers at x = 1 and the Fibonacci numbers at x = -1 (except for the sign). See the example section.
The Pell numbers and the dual Pell numbers are also values of the polynomials, at the points x = -1/2 and x = 1/2 (up to the normalization factor 2^n). This suggests a harmonized terminology: To call 2^n*P(n, -1/2) = 1, 0, 1, 2, 5, ... the Pell numbers (A000129) and 2^n*P(n, 1/2) = 1, 4, 9, 22, ... the dual Pell numbers (A048654).
Based on our naming convention one could call A162515 (without the prepended 0) the Fibonacci polynomials. In the definition above only the initial values would change to: T(n, k) = k + 1 for k < 1. To extend this line of thought we introduce A374438 as the third triangle of this family.
The triangle is closely related to the qStirling2 numbers at q = -1. For the definition of these numbers see A333143. This relates the triangle to A065941 and A103631.

Examples

			Triangle starts:
  [ 0] [1]
  [ 1] [1, 2]
  [ 2] [1, 2, 1]
  [ 3] [1, 2, 2,  2]
  [ 4] [1, 2, 3,  4,  1]
  [ 5] [1, 2, 4,  6,  3,  2]
  [ 6] [1, 2, 5,  8,  6,  6,  1]
  [ 7] [1, 2, 6, 10, 10, 12,  4,  2]
  [ 8] [1, 2, 7, 12, 15, 20, 10,  8,  1]
  [ 9] [1, 2, 8, 14, 21, 30, 20, 20,  5,  2]
  [10] [1, 2, 9, 16, 28, 42, 35, 40, 15, 10, 1]
.
Table of interpolated sequences:
  |  n | A039834 & A000045 | A000032 |   A000129   |   A048654  |
  |  n |     -P(n,-1)      | P(n,1)  |2^n*P(n,-1/2)|2^n*P(n,1/2)|
  |    |     Fibonacci     |  Lucas  |     Pell    |    Pell*   |
  |  0 |        -1         |     1   |       1     |       1    |
  |  1 |         1         |     3   |       0     |       4    |
  |  2 |         0         |     4   |       1     |       9    |
  |  3 |         1         |     7   |       2     |      22    |
  |  4 |         1         |    11   |       5     |      53    |
  |  5 |         2         |    18   |      12     |     128    |
  |  6 |         3         |    29   |      29     |     309    |
  |  7 |         5         |    47   |      70     |     746    |
  |  8 |         8         |    76   |     169     |    1801    |
  |  9 |        13         |   123   |     408     |    4348    |
		

Crossrefs

Triangles related to Lucas polynomials: A034807, A114525, A122075, A061896, A352362.
Triangles related to Fibonacci polynomials: A162515, A053119, A168561, A049310, A374441.
Sums include: A000204 (Lucas numbers, row), A000045 & A212804 (even sums, Fibonacci numbers), A006355 (odd sums), A039834 (alternating sign row).
Type m^n*P(n, 1/m): A000129 & A048654 (Pell, m=2), A108300 & A003688 (m=3), A001077 & A048875 (m=4).
Adding and subtracting the values in a row of the table (plus halving the values obtained in this way): A022087, A055389, A118658, A052542, A163271, A371596, A324969, A212804, A077985, A069306, A215928.
Columns include: A040000 (k=1), A000027 (k=2), A005843 (k=3), A000217 (k=4), A002378 (k=5).
Diagonals include: A000034 (k=n), A029578 (k=n-1), abs(A131259) (k=n-2).
Cf. A029578 (subdiagonal), A124038 (row reversed triangle, signed).

Programs

  • Magma
    function T(n,k) // T = A374439
      if k lt 0 or k gt n then return 0;
      elif k le 1 then return k+1;
      else return T(n-1,k) + T(n-2,k-2);
      end if;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 23 2025
    
  • Maple
    A374439 := (n, k) -> ifelse(k::odd, 2, 1)*binomial(n - irem(k, 2) - iquo(k, 2), iquo(k, 2)):
    # Alternative, using the function qStirling2 from A333143:
    T := (n, k) -> 2^irem(k, 2)*qStirling2(n, k, -1):
    seq(seq(T(n, k), k = 0..n), n = 0..10);
  • Mathematica
    A374439[n_, k_] := (# + 1)*Binomial[n - (k + #)/2, (k - #)/2] & [Mod[k, 2]];
    Table[A374439[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Paolo Xausa, Jul 24 2024 *)
  • Python
    from functools import cache
    @cache
    def T(n: int, k: int) -> int:
        if k > n: return 0
        if k < 2: return k + 1
        return T(n - 1, k) + T(n - 2, k - 2)
    
  • Python
    from math import comb as binomial
    def T(n: int, k: int) -> int:
        o = k & 1
        return binomial(n - o - (k - o) // 2, (k - o) // 2) << o
    
  • Python
    def P(n, x):
        if n < 0: return P(n, x)
        return sum(T(n, k)*x**k for k in range(n + 1))
    def sgn(x: int) -> int: return (x > 0) - (x < 0)
    # Table of interpolated sequences
    print("|  n | A039834 & A000045 | A000032 |   A000129   |   A048654  |")
    print("|  n |     -P(n,-1)      | P(n,1)  |2^n*P(n,-1/2)|2^n*P(n,1/2)|")
    print("|    |     Fibonacci     |  Lucas  |     Pell    |    Pell*   |")
    f = "| {0:2d} | {1:9d}         |  {2:4d}   |   {3:5d}     |    {4:4d}    |"
    for n in range(10): print(f.format(n, -P(n, -1), P(n, 1), int(2**n*P(n, -1/2)), int(2**n*P(n, 1/2))))
    
  • SageMath
    from sage.combinat.q_analogues import q_stirling_number2
    def A374439(n,k): return (-1)^((k+1)//2)*2^(k%2)*q_stirling_number2(n+1, k+1, -1)
    print(flatten([[A374439(n, k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 23 2025

Formula

T(n, k) = 2^k' * binomial(n - k' - (k - k') / 2, (k - k') / 2) where k' = 1 if k is odd and otherwise 0.
T(n, k) = (1 + (k mod 2))*qStirling2(n, k, -1), see A333143.
2^n*P(n, -1/2) = A000129(n - 1), Pell numbers, P(-1) = 1.
2^n*P(n, 1/2) = A048654(n), dual Pell numbers.
T(2*n, n) = (1/2)*(-1)^n*( (1+(-1)^n)*A005809(n/2) - 2*(1-(-1)^n)*A045721((n-1)/2) ). - G. C. Greubel, Jan 23 2025

A374441 Triangle read by rows: T(n, k) = binomial(n - floor(k/2), ceiling(k/2)) - binomial(n - ceiling(k/2), floor(k/2)).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 3, 0, 1, 0, 0, 4, 0, 3, 0, 0, 0, 5, 0, 6, 0, 1, 0, 0, 6, 0, 10, 0, 4, 0, 0, 0, 7, 0, 15, 0, 10, 0, 1, 0, 0, 8, 0, 21, 0, 20, 0, 5, 0, 0, 0, 9, 0, 28, 0, 35, 0, 15, 0, 1, 0, 0, 10, 0, 36, 0, 56, 0, 35, 0, 6, 0, 0, 0, 11, 0, 45, 0, 84, 0, 70, 0, 21, 0, 1, 0
Offset: 0

Views

Author

Peter Luschny, Jul 19 2024

Keywords

Comments

Member of the family of Fibonacci polynomials (A011973, A162515, ...) and Chebyshev polynomials (A053119).

Examples

			Triangle starts:
  [ 0]  0;
  [ 1]  0, 0;
  [ 2]  0, 1, 0;
  [ 3]  0, 2, 0,  0;
  [ 4]  0, 3, 0,  1, 0;
  [ 5]  0, 4, 0,  3, 0,  0;
  [ 6]  0, 5, 0,  6, 0,  1, 0;
  [ 7]  0, 6, 0, 10, 0,  4, 0,  0;
  [ 8]  0, 7, 0, 15, 0, 10, 0,  1, 0;
  [ 9]  0, 8, 0, 21, 0, 20, 0,  5, 0, 0;
  [10]  0, 9, 0, 28, 0, 35, 0, 15, 0, 1, 0;
		

Crossrefs

Cf. A374440 (odd columns agree).
Cf. A000071 (row sums), A065941, A194005, A103631, A007318.

Programs

  • Maple
    T := (n, k) -> if k::even then 0 else binomial(n - (k + 1)/2, (k + 1)/2) fi:
    # Or as a recurrence:
    T := proc(n, k) option remember; if k::even or k > n then 0 elif k = 1 then n - 1 else T(n - 1, k) + T(n - 2, k - 2) fi end:
    seq(seq(T(n, k), k = 0..n), n = 0..12);
  • Mathematica
    A374441[n_, k_] := If[OddQ[k], Binomial[n - (k + 1)/2, (k + 1)/2], 0];
    Table[A374441[n, k], {n, 0, 15}, {k, 0, n}] (* Paolo Xausa, Nov 16 2024 *)
  • Python
    from math import isqrt, comb
    def A374441(n):
        a = (m:=isqrt(k:=n+1<<1))-(k<=m*(m+1))
        b = n-comb(a+1,2)
        return comb(a-(b+1>>1),b+1>>1) if b&1 else 0 # Chai Wah Wu, Nov 14 2024
    
  • Python
    from math import comb as binomial
    def row(n: int) -> list[int]:
        return [binomial(n - (k+1)//2, (k+1)//2) if k%2 else 0 for k in range(n+1)]
    for n in range(11): print(row(n))  # Peter Luschny, Nov 21 2024

Formula

T(n, k) = [x^(n-k)][z^n] (x / (1 - x*z - z^2)).
T(n, k) = binomial(n - (k + 1)/2, (k + 1)/2) if k is odd, and otherwise 0.
Sum_{k=0..n} T(n, k) = Fibonacci(n + 1) - 1.
Columns with odd index agree with the odd indexed columns of A374440.

A174559 Triangle T(n,k)of the coefficients [x^(n-k)] of the polynomials q(0,x)=-1, q(1,x)=3*x, q(n,x)=x*q(n-1,x)-q(n-2,x) in row n,column k. A companion to A193002(n).

Original entry on oeis.org

-1, 3, 0, 3, 0, 1, 3, 0, -2, 0, 3, 0, -5, 0, -1, 3, 0, -8, 0, 1, 0, 3, 0, -11, 0, 6, 0, 1, 3, 0, -14, 0, 14, 0, 0, 0, 3, 0, -17, 0, 25, 0, -6, 0, -1, 3, 0, -20, 0, 39, 0, -20, 0, -1, 0, 3, 0, -23, 0, 56, 0, -45, 0, 5, 0, 1
Offset: 0

Views

Author

Paul Curtz, Aug 20 2011

Keywords

Comments

a(n)=
-1, :-1,
3, 0, :3*x,
3, 0, 1, :3*x^2+1,
3, 0, -2, 0, :3*x^3-2*x,
3, 0, -5, 0, -1,
3, 0, -8, 0, 1, 0
3, 0, -11, 0, 6, 0, 1.
Row sum=period 6:repeat -1, 3, 4, 1, -3, 4=-A117378(n)=A117378(n+3).

Crossrefs

Cf. A192011.

Formula

a(n) + A193002(n)=4*A192174(n).
a(n) - A193002(n)=2*A053119(n), Chebyshev's S(n,x).

A195662 Triangle T(n,k) read by rows: T(0,0)= -3, T(1,0)= 2, T(1,1) = 0 and T(n,k) = T(n-1,k) -T(n-2,k-2) otherwise.

Original entry on oeis.org

-3, 2, 0, 2, 0, 3, 2, 0, 1, 0, 2, 0, -1, 0, -3, 2, 0, -3, 0, -4, 0, 2, 0, -5, 0, -3, 0, 3, 2, 0, -7, 0, 0, 0, 7, 0, 2, 0, -9, 0, 5, 0, 10, 0, -3, 2, 0, -11, 0, 12, 0, 10, 0, -10, 0, 2, 0, -13, 0, 21, 0, 5, 0, -20, 0, 3, 2, 0, -15, 0, 32, 0, -7, 0, -30, 0, 13, 0
Offset: 0

Views

Author

Paul Curtz, Sep 22 2011

Keywords

Comments

In the notation of A195673, this defines polynomials P(n,x,p=-3,q=2), where p and q are the values of the constant and linear order for n=0 and 1.
Row sums -- the value P(n,1,-3,2) of the polynomial -- are A130848(n+5).
For general seed values in the two top rows of the triangle, the recurrence T(n,k) = T(n-1,k) - T(n-2,k-2) defines the triangle
p;
q, 0;
q, 0, -p;
q, 0, -p-q, 0;
q, 0, -p-2q, 0, p;
q, 0, -p-3q, 0, 2p+q, 0;
and a companion triangle by adding 1 to both seed values:
p+1;
q+1, 0;
q+1, 0, -p-1;
q+1, 0, -p-q-2, 0;
q+1, 0, -p-2q-3, 0, p+1;
q+1, 0, -p-3q-4, 0, 2p+q+3, 0;
The point-by-point difference between two companions is P(n,x,p+1,q+1) - P(n,x,p,q) = S(n,x) as represented (with increasing exponents) by A053119.
Examples of such triangles are A053119 (p=q=1), A192575 (p=1, q=2),
A162514 (p=2, q=1, up to a sign factor), A192011 (p=-1, q=2), A135929 (p=-2, q=1, apart from a irregular leading T(0,0)).

Examples

			The first few rows are
-3;
2, 0;
2, 0,   3;
2, 0,   1, 0;
2, 0,  -1, 0, -3;
2, 0,  -3, 0, -4, 0;
2, 0,  -5, 0, -3, 0,  3;
2, 0,  -7, 0,  0, 0,  7, 0;
2, 0,  -9, 0,  5, 0, 10, 0,  -3;
2, 0, -11, 0, 12, 0, 10, 0, -10, 0;
2, 0, -13, 0, 21, 0,  5, 0, -20, 0, 3;
		

Crossrefs

Programs

  • Mathematica
    p = -3; q = 2; t[0, 0] = p; t[, 0] = q; t[, ?OddQ] = 0; t[n, k_] /; k > n = 0; t[n_ /; n >= 0, k_ /; k >= 0] := t[n, k] = t[n-1, k] - t[n-2, k-2]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 27 2012 *)

Formula

T(n,0) = 2 (n>0).
T(n,2) = -A060747(n-3), n>2.
T(n,4) = A028347(n-5), n>6.
T(2n,2n) = -3*(-1)^n ; T(n, 2k-1) = 0 ; T(2n+1,2n) = -(3n-2)*(-1)^n. - M. F. Hasler, Sep 28 2011

A195673 Triangle T(n,k) read by rows: T(0,0)=-2, T(1,0)=3, T(1,1)=0 and T(n,k) = T(n-1,k)-T(n-2,k-2) otherwise.

Original entry on oeis.org

-2, 3, 0, 3, 0, 2, 3, 0, -1, 0, 3, 0, -4, 0, -2, 3, 0, -7, 0, -1, 0, 3, 0, -10, 0, 3, 0, 2, 3, 0, -13, 0, 10, 0, 3, 0, 3, 0, -16, 0, 20, 0, 0, 0, -2, 3, 0, -19, 0, 33, 0, -10, 0, -5, 0, 3, 0, -22, 0, 49, 0, -30, 0, -5, 0, 2, 3, 0, -25, 0, 68
Offset: 0

Views

Author

Paul Curtz, Sep 23 2011

Keywords

Comments

Obviously T(n,k) = 0 for all odd k.
Conjecture: The polynomials p(n,x) = sum_{k=0..n} T(n,k)*x^(n-k) based on this simple recurrence for other initial constant values of T(0,0)=p and T(1,0)=q are related to the S-polynomials of A053119: p(n,x,p+1,q+1)-p(n,x,p,q) = S(n,x).

Examples

			-2;
3, 0;
3, 0,   2;
3, 0,  -1, 0;
3, 0,  -4, 0, -2;
3, 0,  -7, 0, -1, 0;
3, 0, -10, 0,  3, 0, 2;
3, 0, -13, 0, 10, 0, 3, 0.
		

Crossrefs

Cf. A195662, A192011 (p=-1, q=2), A135929 (p=-2, q=1).
Showing 1-10 of 11 results. Next