A053120 Triangle of coefficients of Chebyshev's T(n,x) polynomials (powers of x in increasing order).
1, 0, 1, -1, 0, 2, 0, -3, 0, 4, 1, 0, -8, 0, 8, 0, 5, 0, -20, 0, 16, -1, 0, 18, 0, -48, 0, 32, 0, -7, 0, 56, 0, -112, 0, 64, 1, 0, -32, 0, 160, 0, -256, 0, 128, 0, 9, 0, -120, 0, 432, 0, -576, 0, 256, -1, 0, 50, 0, -400, 0, 1120, 0, -1280, 0, 512, 0, -11, 0, 220, 0, -1232, 0, 2816, 0, -2816, 0, 1024
Offset: 0
Examples
The triangle a(n,m) begins: n\m 0 1 2 3 4 5 6 7 8 9 10... 0: 1 1: 0 1 2: -1 0 2 3: 0 -3 0 4 4: 1 0 -8 0 8 5: 0 5 0 -20 0 16 6: -1 0 18 0 -48 0 32 7: 0 -7 0 56 0 -112 0 64 8: 1 0 -32 0 160 0 -256 0 128 9: 0 9 0 -120 0 432 0 -576 0 256 10: -1 0 50 0 -400 0 1120 0 -1280 0 512 ... Reformatted and extended - _Wolfdieter Lang_, Oct 21 2013 E.g., the fourth row (n=3) corresponds to the polynomial T(3,x) = -3*x + 4*x^3.
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964. Tenth printing, Wiley, 2002 (also electronically available), p. 795.
- F. Hirzebruch et al., Manifolds and Modular Forms, Vieweg 1994 pp. 77, 105.
- Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 22, page 196.
- TableCurve 2D, Automated curve fitting and equation discovery, Version 5.01 for Windows, User's Manual, Chebyshev Series Polynomials and Rationals, pages 12-21 - 12-24, SYSTAT Software, Inc., Richmond, WA, 2002.
Links
- T. D. Noe, Rows 0 to 100 of triangle, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [scanned copy], p. 795.
- Paul Barry and A. Hennessy, Meixner-Type Results for Riordan Arrays and Associated Integer Sequences, J. Int. Seq. 13 (2010) # 10.9.4, section 5.
- Tom Copeland, Addendum to Elliptic Lie Triad.
- P. Damianou, On the characteristic polynomials of Cartan matrices and Chebyshev polynomials, arXiv preprint arXiv:1110.6620 [math.RT], 2014. - From _Tom Copeland_, Oct 11 2014
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- Wolfdieter Lang, Rows n = 0..20.
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 16.
- Wikipedia, Chebyshev polynomials.
- Index entries for sequences related to Chebyshev polynomials.
Crossrefs
Programs
-
Julia
using Nemo function A053120Row(n) R, x = PolynomialRing(ZZ, "x") p = chebyshev_t(n, x) [coeff(p, j) for j in 0:n] end for n in 0:6 A053120Row(n) |> println end # Peter Luschny, Mar 13 2018
-
Magma
&cat[ Coefficients(ChebyshevT(n)): n in [0..11] ]; // Klaus Brockhaus, Mar 08 2008
-
Maple
with(orthopoly) ; A053120 := proc(n,k) T(n,x) ; coeftayl(%,x=0,k) ; end proc: # R. J. Mathar, Jun 30 2013 T := (n, x) -> `if`(n = 0, 1, add((-1)^(n - k) * (n/(2*k))*binomial(k, n - k) *(2*x)^(2*k - n), k = 1 ..n)): seq(seq(coeff(T(n, x), x, k), k = 0..n), n = 0..11); # Peter Luschny, Sep 20 2022
-
Mathematica
t[n_, k_] := Coefficient[ ChebyshevT[n, x], x, k]; Flatten[ Table[ t[n, k], {n, 0, 11}, {k, 0, n}]] (* Jean-François Alcover, Jan 16 2012 *)
-
PARI
for(n=0,5,P=polchebyshev(n);for(k=0,n,print1(polcoeff(P,k)", "))) \\ Charles R Greathouse IV, Jan 16 2012
-
SageMath
def f(n,k): # f = A039991 if (n<2 and k==0): return 1 elif (k<0 or k>n): return 0 else: return 2*f(n-1, k) - f(n-2, k-2) def A053120(n,k): return f(n, n-k) flatten([[A053120(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Aug 10 2022
Formula
T(n, m) = A039991(n, n-m).
G.f. for row polynomials T(n,x) (signed triangle): (1-x*z)/(1-2*x*z+z^2). If unsigned: (1-x*z)/(1-2*x*z-z^2).
T(n, m) := 0 if n < m or n+m odd; T(n, m) = (-1)^(n/2) if m=0 (n even); otherwise T(n, m) = ((-1)^((n+m)/2 + m))*(2^(m-1))*n*binomial((n+m)/2-1, m-1)/m.
Recursion for n >= 2: T(n, m) = T*a(n-1, m-1) - T(n-2, m), T(n, m)=0 if n < m, T(n, -1) := 0, T(0, 0) = T(1, 1) = 1.
G.f. for m-th column (signed triangle): 1/(1+x^2) if m=0, otherwise (2^(m-1))*(x^m)*(1-x^2)/(1+x^2)^(m+1).
From G. C. Greubel, Aug 10 2022: (Start)
Sum_{k=0..floor(n/2)} T(n-k, k) = A000007(n).
T(2*n, n) = i^n * A036909(n/2) * (1+(-1)^n)/2 + [n=0]/3. (End)
T(n, k) = [x^k] T(n, x) for n >= 1, where T(n, x) = Sum_{k=1..n}(-1)^(n - k)*(n/ (2*k))*binomial(k, n - k)*(2*x)^(2*k - n). - Peter Luschny, Sep 20 2022
Comments