A054334
1/512 of 11th unsigned column of triangle A053120 (T-Chebyshev, rising powers, zeros omitted).
Original entry on oeis.org
1, 12, 77, 352, 1287, 4004, 11011, 27456, 63206, 136136, 277134, 537472, 999362, 1790712, 3105322, 5230016, 8580495, 13748020, 21559395, 33153120, 50075025, 74397180, 108864405, 157073280, 223689180, 314707536, 437766252, 602516992, 821063892, 1108479152
Offset: 0
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
- Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
- T. D. Noe, Table of n, a(n) for n = 0..1000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Milan Janjic, Two Enumerative Functions.
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 15.
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
- Index entries for sequences related to Chebyshev polynomials.
-
List([0..30], n -> (2*n+10)*Binomial(n+9, 9)/10); # G. C. Greubel, Dec 02 2018
-
[(2*n+10)*Binomial(n+9, 9)/10: n in [0..40]]; // G. C. Greubel, Dec 02 2018
-
Table[(2*n + 10)*Binomial[n + 9, 9]/10, {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jan 15 2009 *)
LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{1,12,77,352,1287,4004,11011,27456,63206,136136,277134},30] (* Harvey P. Dale, May 11 2025 *)
-
vector(40, n, n--; (2*n+10)*binomial(n+9, 9)/10) \\ G. C. Greubel, Dec 02 2018
-
[(2*n+10)*binomial(n+9, 9)/10 for n in range(40)] # G. C. Greubel, Dec 02 2018
A006974
Coefficients of Chebyshev T polynomials: a(n) = A053120(n+8, n), n >= 0.
Original entry on oeis.org
1, 9, 50, 220, 840, 2912, 9408, 28800, 84480, 239360, 658944, 1770496, 4659200, 12042240, 30638080, 76873728, 190513152, 466944000, 1133117440, 2724986880, 6499598336, 15386804224, 36175872000, 84515225600, 196293427200, 453437816832
Offset: 0
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Milan Janjic, Two Enumerative Functions
- M. H. Albert, M. D. Atkinson, R. Brignall, The enumeration of three pattern classes using monotone grid classes, El. J. Combinat. 19 (3) (2012) P20, Chapter 5.4.1.
- Index entries for sequences related to Chebyshev polynomials.
-
[2^(n-1)/4*Binomial(n+3,3)*(n+8) : n in [0..25]]; // Brad Clardy, Mar 08 2012
-
a := n->n*(n+1)*(n+2)*(n+7)*2^(n-5)/3;
A054333
1/256 of tenth unsigned column of triangle A053120 (T-Chebyshev, rising powers, zeros omitted).
Original entry on oeis.org
1, 11, 65, 275, 935, 2717, 7007, 16445, 35750, 72930, 140998, 260338, 461890, 791350, 1314610, 2124694, 3350479, 5167525, 7811375, 11593725, 16921905, 24322155, 34467225, 48208875, 66615900, 91018356, 123058716, 164750740
Offset: 0
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196.
- Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Milan Janjic, Two Enumerative Functions.
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 15.
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
- Index entries for sequences related to Chebyshev polynomials.
-
List([0..30],n->(2*n+9)*Binomial(n+8,8)/9); # Muniru A Asiru, Dec 06 2018
-
[Binomial(n+8,8)+2*Binomial(n+8,9): n in [0..40]]; // Vincenzo Librandi, Feb 14 2016
-
LinearRecurrence[{10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {1, 11, 65, 275, 935, 2717, 7007, 16445, 35750, 72930}, 30] (* Vincenzo Librandi, Feb 14 2016 *)
-
vector(40, n, n--; (2*n+9)*binomial(n+8, 8)/9) \\ G. C. Greubel, Dec 02 2018
-
[(2*n+9)*binomial(n+8, 8)/9 for n in range(40)] # G. C. Greubel, Dec 02 2018
A006975
Negated coefficients of Chebyshev T polynomials: a(n) = -A053120(n+10, n), n >= 0.
Original entry on oeis.org
1, 11, 72, 364, 1568, 6048, 21504, 71808, 228096, 695552, 2050048, 5870592, 16400384, 44843008, 120324096, 317521920, 825556992, 2118057984, 5369233408, 13463453696, 33426505728, 82239815680, 200655503360, 485826232320
Offset: 0
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Paolo Xausa, Table of n, a(n) for n = 0..1000
- Milan Janjic, Two Enumerative Functions
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (12,-60,160,-240,192,-64).
-
[2^(n-1)/5*Binomial(n+4,4)*(n+10): n in [0..25]]; // Brad Clardy, Mar 10 2012
-
Table[2^(n-1)/5*Binomial[n+4, 4]*(n+10), {n, 0, 30}] (* Paolo Xausa, Jun 26 2024 *)
A006976
Coefficients of Chebyshev T polynomials: a(n) = A053120(n+12, n), n >= 0.
Original entry on oeis.org
1, 13, 98, 560, 2688, 11424, 44352, 160512, 549120, 1793792, 5637632, 17145856, 50692096, 146227200, 412778496, 1143078912, 3111714816, 8341487616, 22052208640, 57567870976, 148562247680, 379364311040, 959384125440
Offset: 0
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Milan Janjic, Two Enumerative Functions
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (14,-84,280,-560,672,-448,128).
-
List([0..25], n-> 2^(n-1)*Binomial(n+5,5)*(n+12)/6); # G. C. Greubel, Aug 27 2019
-
[2^(n-1)/6*Binomial(n+5,5)*(n+12) : n in [0..25]]; // Brad Clardy, Mar 10 2012
-
seq(2^(n-1)*binomial(n+5,5)*(n+12)/6, n=0..25); # G. C. Greubel, Aug 27 2019
-
Table[2^(n-1)*Binomial[n+5,5]*(n+12)/6, {n,0,25}] (* G. C. Greubel, Aug 27 2019 *)
LinearRecurrence[{14,-84,280,-560,672,-448,128},{1,13,98,560,2688,11424,44352},30] (* Harvey P. Dale, Sep 26 2024 *)
-
vector(26, n, 2^(n-2)*binomial(n+4,5)*(n+11)/6) \\ G. C. Greubel, Aug 27 2019
-
[2^(n-1)*binomial(n+5,5)*(n+12)/6 for n in (0..25)] # G. C. Greubel, Aug 27 2019
A209404
Negated coefficients of Chebyshev T polynomials: a(n) = -A053120(n+14, n), n >= 0.
Original entry on oeis.org
1, 15, 128, 816, 4320, 20064, 84480, 329472, 1208064, 4209920, 14057472, 45260800, 141213696, 428654592, 1270087680, 3683254272, 10478223360, 29297934336, 80648077312, 218864025600, 586290298880, 1551944908800, 4063273943040
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (16,-112,448,-1120,1792,-1792,1024,-256).
-
List([0..30], n-> 2^(n-1)*(n+14)*Binomial(n+6,6)/7); # G. C. Greubel, Oct 18 2019
-
Rn:=6; [2^(n-1)/(Rn+1)*Binomial(n+Rn,Rn)*(n+(Rn+1)*2) : n in [0..22]];
-
R:=PowerSeriesRing(Integers(), 23); Coefficients(R!( (1-x)/(1-2*x)^8 )); // Marius A. Burtea, Oct 17 2019
-
seq(2^(n-1)*(n+14)*binomial(n+6,6)/7, n=0..30); # G. C. Greubel, Oct 18 2019
-
CoefficientList[Series[(1-x)/(1-2*x)^8, {x,0,30}], x] (* or *) Table[2^(n-1)*Binomial[n+6,6]*(n+14)/7, {n,0,30}] (* G. C. Greubel, Jan 03 2018 *)
-
for(n=0,30, print1(2^(n-1)*binomial(n+6,6)*(n+14)/7, ", ")) \\ G. C. Greubel, Jan 03 2018
A111526
Number triangle T(n,k)=C((n+k)/2,k)(n+1)(1+(-1)^(n-k))/(2(k+1)); T(n,k)=(-1)^((n-k)/2)*A053120(n+1,k+1)/2^k; Riordan array ((1+x^2)/(1-x^2)^2,x/(1-x^2)).
Original entry on oeis.org
1, 0, 1, 3, 0, 1, 0, 4, 0, 1, 5, 0, 5, 0, 1, 0, 9, 0, 6, 0, 1, 7, 0, 14, 0, 7, 0, 1, 0, 16, 0, 20, 0, 8, 0, 1, 9, 0, 30, 0, 27, 0, 9, 0, 1, 0, 25, 0, 50, 0, 35, 0, 10, 0, 1, 11, 0, 55, 0, 77, 0, 44, 0, 11, 0, 1, 0, 36, 0, 105, 0, 112, 0, 54, 0, 12, 0, 1, 13, 0, 91, 0, 182, 0, 156, 0, 65, 0, 13, 0, 1, 0
Offset: 0
Triangle starts
1;
0,1;
3,0,1;
0,4,0,1;
5,0,5,0,1;
0,9,0,6,0,1;
7,0,14,0,7,0,1;
A136265
Integral form of A053120 :Triangle of coefficients of Integral form Chebyshev's T(n, x) polynomials (powers of x in increasing order); Much improved version by use of the integro-differential recursive form over a previous attempt.
Original entry on oeis.org
1, -1, 2, 0, -4, 2, 3, -2, -12, 4, 0, 16, -6, -32, 8, -5, 2, 60, -16, -80, 16, 0, -36, 10, 192, -40, -192, 32, 7, -2, -168, 36, 560, -96, -448, 64, 0, 64, -14, -640, 112, 1536, -224, -1024, 128, -9, 2, 360, -64, -2160, 320, 4032, -512, -2304, 256, 0, -100, 18, 1600, -240, -6720, 864, 10240, -1152, -5120, 512, 11, -2
Offset: 1
{1},
{-1, 2},
{0, -4, 2},
{3, -2, -12, 4},
{0, 16, -6, -32, 8},
{-5,2, 60, -16, -80, 16},
{0, -36, 10, 192, -40, -192, 32},
{7, -2, -168, 36, 560, -96, -448, 64},
{0, 64, -14, -640, 112, 1536, -224, -1024, 128},
{-9, 2, 360, -64, -2160, 320, 4032, -512, -2304, 256},
{0, -100, 18, 1600, -240, -6720, 864, 10240, -1152, -5120, 512},
{11, -2, -660, 100,6160, -800, -19712, 2240, 25344, -2560, -11264, 1024}
- Harry Hochstadt, The Functions of Mathematical Physics, Dover, New York, 1986,Pages 42-50
-
P[x, 0] = 1; P[x, 1] = x; P[x_, n_] := P[x, n] = 2*x*P[x, n - 1] - P[x, n - 2]; Q[x_, n_] := D[P[x, n + 1], x]; Table[ExpandAll[2*x*P[x, n] - Q[x, n]], {n, 0, 10}]; a = Join[{{1}}, Table[CoefficientList[2*x*P[x, n] - Q[x, n], x], {n, 0, 10}]]; Join[{1}, Table[Apply[Plus, CoefficientList[2*x*P[x, n] - Q[x, n], x]], {n, 0, 10}]]; Flatten[a]
A136523
Triangle T(n,k) = A053120(n,k) + A053120(n-1,k), read by rows.
Original entry on oeis.org
1, 1, 1, -1, 1, 2, -1, -3, 2, 4, 1, -3, -8, 4, 8, 1, 5, -8, -20, 8, 16, -1, 5, 18, -20, -48, 16, 32, -1, -7, 18, 56, -48, -112, 32, 64, 1, -7, -32, 56, 160, -112, -256, 64, 128, 1, 9, -32, -120, 160, 432, -256, -576, 128, 256, -1, 9, 50, -120, -400, 432, 1120, -576, -1280, 256, 512
Offset: 0
Triangle begins as:
1;
1, 1;
-1, 1, 2;
-1, -3, 2, 4;
1, -3, -8, 4, 8;
1, 5, -8, -20, 8, 16;
-1, 5, 18, -20, -48, 16, 32;
-1, -7, 18, 56, -48, -112, 32, 64;
1, -7, -32, 56, 160, -112, -256, 64, 128;
1, 9, -32, -120, 160, 432, -256, -576, 128, 256;
-1, 9, 50, -120, -400, 432, 1120, -576, -1280, 256, 512;
-
function A053120(n,k)
if ((n+k) mod 2) eq 1 then return 0;
elif n eq 0 then return 1;
else return (-1)^Floor((n-k)/2)*(n/(n+k))*Binomial(Floor((n+k)/2), k)*2^k;
end if;
end function;
A136523:= func< n,k | A053120(n,k) + A053120(n-1,k) >;
[A136523(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 26 2023
-
A053120[n_, k_]:= Coefficient[ChebyshevT[n,x], x, k];
T[n_, k_]:= T[n, k]= A053120[n,k] + A053120[n-1,k];
Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten
-
def A053120(n,k):
if (n+k)%2==1: return 0
elif n==0: return 1
else: return floor((-1)^((n-k)//2)*(n/(n+k))*binomial((n+k)//2, k)*2^k)
def A136523(n,k): return A053120(n,k) + A053120(n-1,k)
flatten([[A136523(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 26 2023
A136663
Triangle of coefficients of the Pascal sum of A053120 Chebyshev's T(n, x) polynomials :p(x,n)=2*x*p(x,n-1)-p(x,n-2); pp(x,n)=Sum[Binomial[n,m]*p(x,m),{m,0,n}].
Original entry on oeis.org
1, 1, 1, 0, 2, 2, -2, 0, 6, 4, -4, -8, 4, 16, 8, -4, -20, -20, 20, 40, 16, 0, -24, -72, -40, 72, 96, 32, 8, 0, -112, -224, -56, 224, 224, 64, 16, 64, -32, -448, -624, 0, 640, 512, 128, 16, 144, 288, -288, -1584, -1584, 384, 1728, 1152, 256, 0, 160, 800, 960, -1600, -5088, -3680, 1920, 4480, 2560, 512
Offset: 1
{1},
{1, 1},
{0, 2, 2},
{-2, 0, 6, 4},
{-4, -8, 4, 16, 8},
{-4, -20, -20, 20, 40, 16},
{0, -24, -72, -40, 72, 96, 32},
{8, 0, -112, -224, -56, 224, 224, 64},
{16, 64, -32, -448, -624, 0, 640, 512, 128},
{16, 144, 288, -288, -1584, -1584, 384, 1728, 1152, 256},
{0,160, 800, 960, -1600, -5088, -3680, 1920, 4480, 2560, 512}
-
P[x, 0] = 1; P[x, 1] = x; P[x_, n_] := P[x, n] = 2*x*P[x, n - 1] - P[x, n - 2]; Q[x_, n_] := Q[x, n] = Sum[P[x, m]*Binomial[n, m], {m, 0, n}]; a = Table[CoefficientList[Q[x, n], x], {n, 0, 10}]; Flatten[a]
Showing 1-10 of 209 results.
Comments