cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 209 results. Next

A054334 1/512 of 11th unsigned column of triangle A053120 (T-Chebyshev, rising powers, zeros omitted).

Original entry on oeis.org

1, 12, 77, 352, 1287, 4004, 11011, 27456, 63206, 136136, 277134, 537472, 999362, 1790712, 3105322, 5230016, 8580495, 13748020, 21559395, 33153120, 50075025, 74397180, 108864405, 157073280, 223689180, 314707536, 437766252, 602516992, 821063892, 1108479152
Offset: 0

Views

Author

Keywords

Comments

Partial sums of A054333.
If a 2-set Y and an (n-3)-set Z are disjoint subsets of an n-set X then a(n-11) is the number of 11-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 08 2007
10-dimensional square numbers, ninth partial sums of binomial transform of [1,2,0,0,0,...]. a(n)=sum{i=0,n,C(n+9,i+9)*b(i)}, where b(i)=[1,2,0,0,0,...]. [From Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009]
2*a(n) is number of ways to place 9 queens on an (n+9) X (n+9) chessboard so that they diagonally attack each other exactly 36 times. The maximal possible attack number, p=binomial(k,2)=36 for k=9 queens, is achievable only when all queens are on the same diagonal. In graph-theory representation they thus form the corresponding complete graph. - Antal Pinter, Dec 27 2015

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.

Crossrefs

Programs

  • GAP
    List([0..30], n -> (2*n+10)*Binomial(n+9, 9)/10); # G. C. Greubel, Dec 02 2018
  • Magma
    [(2*n+10)*Binomial(n+9, 9)/10: n in [0..40]]; // G. C. Greubel, Dec 02 2018
    
  • Mathematica
    Table[(2*n + 10)*Binomial[n + 9, 9]/10, {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jan 15 2009 *)
    LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{1,12,77,352,1287,4004,11011,27456,63206,136136,277134},30] (* Harvey P. Dale, May 11 2025 *)
  • PARI
    vector(40, n, n--; (2*n+10)*binomial(n+9, 9)/10) \\ G. C. Greubel, Dec 02 2018
    
  • Sage
    [(2*n+10)*binomial(n+9, 9)/10 for n in range(40)] # G. C. Greubel, Dec 02 2018
    

Formula

a(n) = (2*n+10)*binomial(n+9, 9)/10 = ((-1)^n)*A053120(2*n+10, 10)/2^9.
G.f.: (1+x)/(1-x)^11.
a(n) = 2*binomial(n+10, 10) - binomial(n+9, 9). - Paul Barry, Mar 04 2003
a(n) = binomial(n+9,9) + 2*binomial(n+9,10). - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
a(n) = binomial(n+9,9)*(n+5)/5. - Antal Pinter, Dec 27 2015
From Amiram Eldar, Jan 26 2022: (Start)
Sum_{n>=0} 1/a(n) = 525*Pi^2 - 1160419/224.
Sum_{n>=0} (-1)^n/a(n) = 525*Pi^2/2 - 82875/32. (End)

A006974 Coefficients of Chebyshev T polynomials: a(n) = A053120(n+8, n), n >= 0.

Original entry on oeis.org

1, 9, 50, 220, 840, 2912, 9408, 28800, 84480, 239360, 658944, 1770496, 4659200, 12042240, 30638080, 76873728, 190513152, 466944000, 1133117440, 2724986880, 6499598336, 15386804224, 36175872000, 84515225600, 196293427200, 453437816832
Offset: 0

Views

Author

Keywords

Comments

If X_1,X_2,...,X_n are 2-blocks of a (2n+1)-set X then, for n>=3, a(n-3) is the number of (n+4)-subsets of X intersecting each X_i, (i=1,2,...,n). - Milan Janjic, Nov 18 2007
The fourth corrector line for transforming 2^n offset 0 with a leading 1 into the Fibonacci sequence. [Al Hakanson (hawkuu(AT)gmail.com), Jun 01 2009]

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A039991 (see column 8), A003472 (partial sums), A053120.

Programs

  • Magma
    [2^(n-1)/4*Binomial(n+3,3)*(n+8) : n in [0..25]]; // Brad Clardy, Mar 08 2012
  • Maple
    a := n->n*(n+1)*(n+2)*(n+7)*2^(n-5)/3;

Formula

G.f.: (1-x)/(1-2*x)^5.
a(n) = Sum_{k=0..floor((n+8)/2)} C(n+8, 2k)*C(k, 4). - Paul Barry, May 15 2003
Binomial transform of a(n)=(24*n^4-134*n^3+261*n^2-130*n+3)/3 offset 0. a(3)=220. [Al Hakanson (hawkuu(AT)gmail.com), Jun 01 2009]
a(n) = 2^(n-3)*binomial(n+3, 3)*(n+8). - Brad Clardy, Mar 08 2012 [See a comment in A053120 on subdiagonals. - Wolfdieter Lang, Jan 03 2020]
E.g.f.: (1/3)*exp(2*x)*(3 + 21*x + 27*x^2 + 10*x^3 + x^4). - Stefano Spezia, Aug 17 2019

Extensions

Name clarified by Wolfdieter Lang, Nov 26 2019

A054333 1/256 of tenth unsigned column of triangle A053120 (T-Chebyshev, rising powers, zeros omitted).

Original entry on oeis.org

1, 11, 65, 275, 935, 2717, 7007, 16445, 35750, 72930, 140998, 260338, 461890, 791350, 1314610, 2124694, 3350479, 5167525, 7811375, 11593725, 16921905, 24322155, 34467225, 48208875, 66615900, 91018356, 123058716, 164750740
Offset: 0

Views

Author

Keywords

Comments

If a 2-set Y and an (n-3)-set Z are disjoint subsets of an n-set X then a(n-10) is the number of 10-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 08 2007
9-dimensional square numbers, eighth partial sums of binomial transform of [1,2,0,0,0,...]. a(n)=sum{i=0,n,C(n+8,i+8)*b(i)}, where b(i)=[1,2,0,0,0,...]. - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
2*a(n) is number of ways to place 8 queens on an (n+8) X (n+8) chessboard so that they diagonally attack each other exactly 28 times. The maximal possible attack number, p=binomial(k,2) =28 for k=8 queens, is achievable only when all queens are on the same diagonal. In graph-theory representation they thus form the corresponding complete graph. - Antal Pinter, Dec 27 2015

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.

Crossrefs

Partial sums of A053347. Cf. A053120, A000581.
Cf. A111125, fifth column (s=4, without leading zeros). - Wolfdieter Lang, Oct 18 2012

Programs

  • GAP
    List([0..30],n->(2*n+9)*Binomial(n+8,8)/9); # Muniru A Asiru, Dec 06 2018
  • Magma
    [Binomial(n+8,8)+2*Binomial(n+8,9): n in [0..40]]; // Vincenzo Librandi, Feb 14 2016
    
  • Mathematica
    LinearRecurrence[{10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {1, 11, 65, 275, 935, 2717, 7007, 16445, 35750, 72930}, 30] (* Vincenzo Librandi, Feb 14 2016 *)
  • PARI
    vector(40, n, n--; (2*n+9)*binomial(n+8, 8)/9) \\ G. C. Greubel, Dec 02 2018
    
  • Sage
    [(2*n+9)*binomial(n+8, 8)/9 for n in range(40)] # G. C. Greubel, Dec 02 2018
    

Formula

a(n) = (2*n+9)*binomial(n+8, 8)/9 = ((-1)^n)*A053120(2*n+9, 9)/2^8.
G.f.: (1+x)/(1-x)^10.
a(n) = 2*C(n+9, 9) - C(n+8, 8). - Paul Barry, Mar 04 2003
a(n) = C(n+8,8) + 2*C(n+8,9). - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
E.g.f.: (1/362880)*exp(x)*(362880 + 3628800*x + 7983360*x^2 + 6773760*x^3 + 2751840*x^4 + 592704*x^5 + 70560*x^6 + 4608*x^7 + 153*x^8 + 2*x^9). - Stefano Spezia, Dec 03 2018
From Amiram Eldar, Jan 26 2022: (Start)
Sum_{n>=0} 1/a(n) = 294912*log(2)/35 - 7153248/1225.
Sum_{n>=0} (-1)^n/a(n) = 73728*Pi/35 - 8105688/1225. (End)

A006975 Negated coefficients of Chebyshev T polynomials: a(n) = -A053120(n+10, n), n >= 0.

Original entry on oeis.org

1, 11, 72, 364, 1568, 6048, 21504, 71808, 228096, 695552, 2050048, 5870592, 16400384, 44843008, 120324096, 317521920, 825556992, 2118057984, 5369233408, 13463453696, 33426505728, 82239815680, 200655503360, 485826232320
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of A069038. - Paul Barry, Feb 19 2003
If X_1, X_2, ..., X_n are 2-blocks of a (2n+1)-set X then, for n>=4, a(n-4) is the number of (n+5)-subsets of X intersecting each X_i, (i=1,2,...,n). - Milan Janjic, Nov 18 2007
The 5th corrector line for transforming 2^n offset 0 with a leading 1 into the Fibonacci sequence. - Al Hakanson (hawkuu(AT)gmail.com), Jun 01 2009

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

First differences of A054849.

Programs

  • Magma
    [2^(n-1)/5*Binomial(n+4,4)*(n+10): n in [0..25]]; // Brad Clardy, Mar 10 2012
  • Mathematica
    Table[2^(n-1)/5*Binomial[n+4, 4]*(n+10), {n, 0, 30}] (* Paolo Xausa, Jun 26 2024 *)

Formula

G.f.: (1-x)/(1-2*x)^6. a(n) = 2^(n-1)*binomial(n+4, 4)*(n+10)/5, for n >= 0. [a(n) from Mar 06 2000 rewritten. See the Brad Clardy formula below, and a comment in A053120 on subdiagonals. - Wolfdieter Lang, Jan 03 2020]
a(n) = 2^(n-4)*(n+1)(n+2)(n+3)(n+4)(n+10)/15. - Paul Barry, Feb 19 2003
a(n) = Sum_{k=0..floor((n+10)/2)} C(n+10, 2k)*C(k, 5). - Paul Barry, May 15 2003
a(n) = -A039991(n+10, 10). - N. J. A. Sloane, May 16 2003
a(n) = binomial transform of b(n)= (2*n^5 + 10*n^4 + 30*n^3 + 50*n^2 + 43*n + 15) / 15 offset 0. a(3) = 364. - Al Hakanson (hawkuu(AT)gmail.com), Jun 01 2009
a(n) = 2^(n-1)/5*binomial(n+4,4)*(n+10). - Brad Clardy, Mar 10 2012
E.g.f.: (1/15)*exp(2*x)*(15+135*x+240*x^2+140*x^3+30*x^4+2*x^5). - Stefano Spezia, Jan 03 2020

Extensions

Name clarified by Wolfdieter Lang, Nov 26 2019

A006976 Coefficients of Chebyshev T polynomials: a(n) = A053120(n+12, n), n >= 0.

Original entry on oeis.org

1, 13, 98, 560, 2688, 11424, 44352, 160512, 549120, 1793792, 5637632, 17145856, 50692096, 146227200, 412778496, 1143078912, 3111714816, 8341487616, 22052208640, 57567870976, 148562247680, 379364311040, 959384125440
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of A069039. - Paul Barry, Feb 19 2003
If X_1, X_2, ..., X_n are 2-blocks of a (2n+1)-set X then, for n >= 5, a(n-5) is the number of (n+6)-subsets of X intersecting each X_i, (i = 1, 2, ..., n). - Milan Janjic, Nov 18 2007

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = A039991(n+12, 12), A053120.
Partial sums are in A002409.

Programs

  • GAP
    List([0..25], n-> 2^(n-1)*Binomial(n+5,5)*(n+12)/6); # G. C. Greubel, Aug 27 2019
  • Magma
    [2^(n-1)/6*Binomial(n+5,5)*(n+12) : n in [0..25]]; // Brad Clardy, Mar 10 2012
    
  • Maple
    seq(2^(n-1)*binomial(n+5,5)*(n+12)/6, n=0..25); # G. C. Greubel, Aug 27 2019
  • Mathematica
    Table[2^(n-1)*Binomial[n+5,5]*(n+12)/6, {n,0,25}] (* G. C. Greubel, Aug 27 2019 *)
    LinearRecurrence[{14,-84,280,-560,672,-448,128},{1,13,98,560,2688,11424,44352},30] (* Harvey P. Dale, Sep 26 2024 *)
  • PARI
    vector(26, n, 2^(n-2)*binomial(n+4,5)*(n+11)/6) \\ G. C. Greubel, Aug 27 2019
    
  • Sage
    [2^(n-1)*binomial(n+5,5)*(n+12)/6 for n in (0..25)] # G. C. Greubel, Aug 27 2019
    

Formula

G.f.: (1-x)/(1-2*x)^7.
a(n) = 2^n*binomial(n+5, 5)*(n+12)/12. [See a comment in A053120 on subdiagonal sequences. - Wolfdieter Lang, Jan 03 2020]
a(n) = Sum_{k = 0..floor((n+12)/2)} C(n+12,2*k)*C(k,6). - Paul Barry, May 15 2003
E.g.f.: (1/45)*exp(2*x)*(45 + 495*x + 1125*x^2 + 900*x^3 + 300*x^4 + 42*x^5 + 2*x^6). - Stefano Spezia, Jan 03 2020

Extensions

More terms from James Sellers, Aug 21 2000
Name clarified by Wolfdieter Lang, Nov 26 2019

A209404 Negated coefficients of Chebyshev T polynomials: a(n) = -A053120(n+14, n), n >= 0.

Original entry on oeis.org

1, 15, 128, 816, 4320, 20064, 84480, 329472, 1208064, 4209920, 14057472, 45260800, 141213696, 428654592, 1270087680, 3683254272, 10478223360, 29297934336, 80648077312, 218864025600, 586290298880, 1551944908800, 4063273943040
Offset: 0

Views

Author

Brad Clardy, Mar 08 2012

Keywords

Comments

The MAGMA program provided calculates the coefficients of order one Chebyshev polynomials, for any arbitrary level. For example, setting Rn to 0 produces A001792, 1 produces A001793, 2 produces A001794, 3 produces A006974, 4 produces A006975, and 5 produces A006976. This sequence is produced with an Rn of 6.

Crossrefs

Programs

  • GAP
    List([0..30], n-> 2^(n-1)*(n+14)*Binomial(n+6,6)/7); # G. C. Greubel, Oct 18 2019
  • Magma
    Rn:=6; [2^(n-1)/(Rn+1)*Binomial(n+Rn,Rn)*(n+(Rn+1)*2) : n in [0..22]];
    
  • Magma
    R:=PowerSeriesRing(Integers(), 23); Coefficients(R!( (1-x)/(1-2*x)^8 )); // Marius A. Burtea, Oct 17 2019
    
  • Maple
    seq(2^(n-1)*(n+14)*binomial(n+6,6)/7, n=0..30); # G. C. Greubel, Oct 18 2019
  • Mathematica
    CoefficientList[Series[(1-x)/(1-2*x)^8, {x,0,30}], x] (* or *) Table[2^(n-1)*Binomial[n+6,6]*(n+14)/7, {n,0,30}] (* G. C. Greubel, Jan 03 2018 *)
  • PARI
    for(n=0,30, print1(2^(n-1)*binomial(n+6,6)*(n+14)/7, ", ")) \\ G. C. Greubel, Jan 03 2018
    

Formula

a(n) = 2^(n-1)*binomial(n+6, 6)*(n+14)/7 = -A053120(n+14, n), n >= 0. [See a comment in A053120 on subdiagonal sequences. - Wolfdieter Lang, Jan 03 2020]
G.f.: (1-x)/(1-2*x)^8. - Colin Barker, May 31 2013
E.g.f.: (1/315)*exp(2*x)*(315 + 4095*x + 11340*x^2 + 11550*x^3 + 5250*x^4 + 1134*x^5 + 112*x^6 + 4*x^7). - Stefano Spezia, Oct 17 2019

Extensions

Name made more specific by Wolfdieter Lang, Nov 25 2019

A111526 Number triangle T(n,k)=C((n+k)/2,k)(n+1)(1+(-1)^(n-k))/(2(k+1)); T(n,k)=(-1)^((n-k)/2)*A053120(n+1,k+1)/2^k; Riordan array ((1+x^2)/(1-x^2)^2,x/(1-x^2)).

Original entry on oeis.org

1, 0, 1, 3, 0, 1, 0, 4, 0, 1, 5, 0, 5, 0, 1, 0, 9, 0, 6, 0, 1, 7, 0, 14, 0, 7, 0, 1, 0, 16, 0, 20, 0, 8, 0, 1, 9, 0, 30, 0, 27, 0, 9, 0, 1, 0, 25, 0, 50, 0, 35, 0, 10, 0, 1, 11, 0, 55, 0, 77, 0, 44, 0, 11, 0, 1, 0, 36, 0, 105, 0, 112, 0, 54, 0, 12, 0, 1, 13, 0, 91, 0, 182, 0, 156, 0, 65, 0, 13, 0, 1, 0
Offset: 0

Views

Author

Paul Barry, Aug 05 2005

Keywords

Comments

A scaled Chebyshev triangle.
Row sums are A001350(n+1). Diagonal sums are A033484, with interpolated zeros. Inverse is A111527.

Examples

			Triangle starts
1;
0,1;
3,0,1;
0,4,0,1;
5,0,5,0,1;
0,9,0,6,0,1;
7,0,14,0,7,0,1;
		

Crossrefs

Cf. A110813.

A136265 Integral form of A053120 :Triangle of coefficients of Integral form Chebyshev's T(n, x) polynomials (powers of x in increasing order); Much improved version by use of the integro-differential recursive form over a previous attempt.

Original entry on oeis.org

1, -1, 2, 0, -4, 2, 3, -2, -12, 4, 0, 16, -6, -32, 8, -5, 2, 60, -16, -80, 16, 0, -36, 10, 192, -40, -192, 32, 7, -2, -168, 36, 560, -96, -448, 64, 0, 64, -14, -640, 112, 1536, -224, -1024, 128, -9, 2, 360, -64, -2160, 320, 4032, -512, -2304, 256, 0, -100, 18, 1600, -240, -6720, 864, 10240, -1152, -5120, 512, 11, -2
Offset: 1

Views

Author

Roger L. Bagula, Mar 18 2008

Keywords

Comments

Row sums are:
Join[{1}, Table[Apply[Plus, CoefficientList[2*x*P[x, n] - Q[x, n], x]], {n,
0, 10}]];
{1, 1, -2, -7, -14, -23, -34, -47, -62, -79, -98, -119}
Integration of the doubled functions is not orthogonal:
Table[Table[Integrate[Sqrt[1/(1 - x^2)]*(2*x*P[x, n] - Q[x, n])*(2*x*P[x, m] -
Q[x, m]), {x, -1, 1}], {n, 0, 10}], {m, 0, 10}]

Examples

			{1},
{-1, 2},
{0, -4, 2},
{3, -2, -12, 4},
{0, 16, -6, -32, 8},
{-5,2, 60, -16, -80, 16},
{0, -36, 10, 192, -40, -192, 32},
{7, -2, -168, 36, 560, -96, -448, 64},
{0, 64, -14, -640, 112, 1536, -224, -1024, 128},
{-9, 2, 360, -64, -2160, 320, 4032, -512, -2304, 256},
{0, -100, 18, 1600, -240, -6720, 864, 10240, -1152, -5120, 512},
{11, -2, -660, 100,6160, -800, -19712, 2240, 25344, -2560, -11264, 1024}
		

References

  • Harry Hochstadt, The Functions of Mathematical Physics, Dover, New York, 1986,Pages 42-50

Crossrefs

Cf. A053120.

Programs

  • Mathematica
    P[x, 0] = 1; P[x, 1] = x; P[x_, n_] := P[x, n] = 2*x*P[x, n - 1] - P[x, n - 2]; Q[x_, n_] := D[P[x, n + 1], x]; Table[ExpandAll[2*x*P[x, n] - Q[x, n]], {n, 0, 10}]; a = Join[{{1}}, Table[CoefficientList[2*x*P[x, n] - Q[x, n], x], {n, 0, 10}]]; Join[{1}, Table[Apply[Plus, CoefficientList[2*x*P[x, n] - Q[x, n], x]], {n, 0, 10}]]; Flatten[a]

Formula

P(x, n) = 2*x*P(x, n - 1) - P(x, n - 2); Q(x, n) := D[P[x, n + 1], x]=dp(x,n)/dx Output Integral form: IP(x,n)=2*x*p(x,n)-Q(x,n)

A136523 Triangle T(n,k) = A053120(n,k) + A053120(n-1,k), read by rows.

Original entry on oeis.org

1, 1, 1, -1, 1, 2, -1, -3, 2, 4, 1, -3, -8, 4, 8, 1, 5, -8, -20, 8, 16, -1, 5, 18, -20, -48, 16, 32, -1, -7, 18, 56, -48, -112, 32, 64, 1, -7, -32, 56, 160, -112, -256, 64, 128, 1, 9, -32, -120, 160, 432, -256, -576, 128, 256, -1, 9, 50, -120, -400, 432, 1120, -576, -1280, 256, 512
Offset: 0

Views

Author

Roger L. Bagula, Mar 23 2008

Keywords

Examples

			Triangle begins as:
   1;
   1,  1;
  -1,  1,   2;
  -1, -3,   2,    4;
   1, -3,  -8,    4,    8;
   1,  5,  -8,  -20,    8,   16;
  -1,  5,  18,  -20,  -48,   16,   32;
  -1, -7,  18,   56,  -48, -112,   32,   64;
   1, -7, -32,   56,  160, -112, -256,   64,   128;
   1,  9, -32, -120,  160,  432, -256, -576,   128, 256;
  -1,  9,  50, -120, -400,  432, 1120, -576, -1280, 256, 512;
		

Crossrefs

Programs

  • Magma
    function A053120(n,k)
      if ((n+k) mod 2) eq 1 then return 0;
      elif n eq 0 then return 1;
      else return (-1)^Floor((n-k)/2)*(n/(n+k))*Binomial(Floor((n+k)/2), k)*2^k;
      end if;
    end function;
    A136523:= func< n,k | A053120(n,k) + A053120(n-1,k) >;
    [A136523(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 26 2023
    
  • Mathematica
    A053120[n_, k_]:= Coefficient[ChebyshevT[n,x], x, k];
    T[n_, k_]:= T[n, k]= A053120[n,k] + A053120[n-1,k];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten
  • SageMath
    def A053120(n,k):
        if (n+k)%2==1: return 0
        elif n==0: return 1
        else: return floor((-1)^((n-k)//2)*(n/(n+k))*binomial((n+k)//2, k)*2^k)
    def A136523(n,k): return A053120(n,k) + A053120(n-1,k)
    flatten([[A136523(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 26 2023

Formula

T(n, k) = A053120(n,k) + A053120(n-1,k).
Sum_{k=0..n} T(n, k) = A040000(n).
From G. C. Greubel, Jul 26 2023: (Start)
T(n, 0) = A057077(n).
T(n, 1) = (-1)^floor((n-1)/2) * A109613(n-1).
T(n, 2) = (-1)^floor((n-2)/2) * A008794(n-1).
T(n, 3) = (-1)^floor((n+1)/2) * A000330(n-1).
T(n, n) = A011782(n).
T(n, n-1) = A011782(n-1).
T(n, n-2) = -A001792(n-2).
T(n, n-4) = A001793(n-3).
T(n, n-6) = -A001794(n-6).
Sum_{k=0..n} (-1)^k*T(n,k) = A000007(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A000007(n) + [n=1].
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (-1)^floor(n/2)*A025192(floor(n/2)). (End)

Extensions

Edited by G. C. Greubel, Jul 26 2023

A136663 Triangle of coefficients of the Pascal sum of A053120 Chebyshev's T(n, x) polynomials :p(x,n)=2*x*p(x,n-1)-p(x,n-2); pp(x,n)=Sum[Binomial[n,m]*p(x,m),{m,0,n}].

Original entry on oeis.org

1, 1, 1, 0, 2, 2, -2, 0, 6, 4, -4, -8, 4, 16, 8, -4, -20, -20, 20, 40, 16, 0, -24, -72, -40, 72, 96, 32, 8, 0, -112, -224, -56, 224, 224, 64, 16, 64, -32, -448, -624, 0, 640, 512, 128, 16, 144, 288, -288, -1584, -1584, 384, 1728, 1152, 256, 0, 160, 800, 960, -1600, -5088, -3680, 1920, 4480, 2560, 512
Offset: 1

Views

Author

Roger L. Bagula, Apr 02 2008

Keywords

Comments

Row sums:
{1, 0, -2, -6, -14, -30, -62, -126, -254, -510, -1022}

Examples

			{1},
{1, 1},
{0, 2, 2},
{-2, 0, 6, 4},
{-4, -8, 4, 16, 8},
{-4, -20, -20, 20, 40, 16},
{0, -24, -72, -40, 72, 96, 32},
{8, 0, -112, -224, -56, 224, 224, 64},
{16, 64, -32, -448, -624, 0, 640, 512, 128},
{16, 144, 288, -288, -1584, -1584, 384, 1728, 1152, 256},
{0,160, 800, 960, -1600, -5088, -3680, 1920, 4480, 2560, 512}
		

Crossrefs

Cf. A053120.

Programs

  • Mathematica
    P[x, 0] = 1; P[x, 1] = x; P[x_, n_] := P[x, n] = 2*x*P[x, n - 1] - P[x, n - 2]; Q[x_, n_] := Q[x, n] = Sum[P[x, m]*Binomial[n, m], {m, 0, n}]; a = Table[CoefficientList[Q[x, n], x], {n, 0, 10}]; Flatten[a]

Formula

p(x,n)=2*x*p(x,n-1)-p(x,n-2); pp(x,n)=Sum[Binomial[n,m]*p(x,m),{m,0,n}]
Showing 1-10 of 209 results. Next