A053121 Catalan triangle (with 0's) read by rows.
1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 2, 0, 3, 0, 1, 0, 5, 0, 4, 0, 1, 5, 0, 9, 0, 5, 0, 1, 0, 14, 0, 14, 0, 6, 0, 1, 14, 0, 28, 0, 20, 0, 7, 0, 1, 0, 42, 0, 48, 0, 27, 0, 8, 0, 1, 42, 0, 90, 0, 75, 0, 35, 0, 9, 0, 1, 0, 132, 0, 165, 0, 110, 0, 44, 0, 10, 0, 1, 132, 0, 297, 0, 275, 0, 154, 0, 54, 0, 11, 0
Offset: 0
Examples
Triangle a(n,m) begins: n\m 0 1 2 3 4 5 6 7 8 9 10 ... 0: 1 1: 0 1 2: 1 0 1 3: 0 2 0 1 4: 2 0 3 0 1 5: 0 5 0 4 0 1 6: 5 0 9 0 5 0 1 7: 0 14 0 14 0 6 0 1 8: 14 0 28 0 20 0 7 0 1 9: 0 42 0 48 0 27 0 8 0 1 10: 42 0 90 0 75 0 35 0 9 0 1 ... (Reformatted by _Wolfdieter Lang_, Sep 20 2013) E.g., the fourth row corresponds to the polynomial p(3,x)= 2*x + x^3. From _Paul Barry_, May 29 2009: (Start) Production matrix is 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1 (End) Boas-Buck recurrence for column k = 2, n = 6: a(6, 2) = (3/4)*(0 + 2*a(4 ,2) + 0 + 6*a(2, 2)) = (3/4)*(2*3 + 6) = 9. - _Wolfdieter Lang_, Aug 11 2017
References
- J. H. Conway and D. A. Smith, On Quaternions and Octonions, A K Peters, Ltd., Natick, MA, 2003. See p. 60. MR1957212 (2004a:17002)
- A. Nkwanta, Lattice paths and RNA secondary structures, in African Americans in Mathematics, ed. N. Dean, Amer. Math. Soc., 1997, pp. 137-147.
Links
- Reinhard Zumkeller, Rows n=0..150 of triangle, flattened
- I. Bajunaid et al., Function series, Catalan numbers and random walks on trees, Amer. Math. Monthly 112 (2005), 765-785.
- C. Banderier and D. Merlini, Lattice paths with an infinite set of jumps
- Paul Barry, Riordan Arrays, Orthogonal Polynomials as Moments, and Hankel Transforms, J. Int. Seq. 14 (2011) # 11.2.2, example 3.
- Paul Barry, On the inversion of Riordan arrays, arXiv:2101.06713 [math.CO], 2021.
- Paul Barry and A. Hennessy, Meixner-Type Results for Riordan Arrays and Associated Integer Sequences, J. Int. Seq. 13 (2010) # 10.9.4, example 3.
- Xiang-Ke Chang, X.-B. Hu, H. Lei, and Y.-N. Yeh, Combinatorial proofs of addition formulas, The Electronic Journal of Combinatorics, 23(1) (2016), #P1.8.
- J. Cigler, Some q-analogues of Fibonacci, Lucas and Chebyshev polynomials with nice moments, 2013.
- J. Cigler, Some remarks about q-Chebyshev polynomials and q-Catalan numbers and related results, 2013.
- J. Cigler, Some notes on q-Gould polynomials, 2013.
- Emeric Deutsch, A. Robertson and D. Saracino, Refined restricted involutions, European Journal of Combinatorics 28 (2007), 481-498 (see pp. 486 and 498).
- J. East and R. D. Gray, Idempotent generators in finite partition monoids and related semigroups, arXiv preprint arXiv:1404.2359, 2014
- D. Gouyou-Beauchamps, Chemins sous-diagonaux et tableau de Young, pp. 112-125 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986 (see |F_{l,p}| on page 114). - _N. J. A. Sloane_, Jan 29 2011
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- V. E. Hoggatt, Jr. and M. Bicknell, Catalan and related sequences arising from inverses of Pascal's triangle matrices, Fib. Quart., 14 (1976), 395-405.
- W. F. Klostermeyer, M. E. Mays, L. Soltes and G. Trapp, A Pascal rhombus, Fibonacci Quarterly, 35 (1997), 318-328.
- Wolfdieter Lang, Chebyshev S-polynomials: ten applications.
- Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38,5 (2000) 408-419; Note 4, pp. 414-415.
- MathOverflow, Catalan numbers as sums of squares of numbers in the rows of the Catalan triangle - is there a combinatorial explanation?
- A. Nkwanta and A. Tefera, Curious Relations and Identities Involving the Catalan Generating Function and Numbers, Journal of Integer Sequences, 16 (2013), #13.9.5.
- Karim Ritter von Merkl, Computing colored Khovanov homology, arXiv:2505.03916 [math.QA], 2025. See p. 2.
- Frank Ruskey and Mark Weston, Spherical Venn Diagrams with Involutory Isometries, Electronic Journal of Combinatorics, 18 (2011), #P191.
- L. W. Shapiro, S. Getu, Wen-Jin Woan and L. C. Woodson, The Riordan Group, Discrete Appl. Maths. 34 (1991) 229-239.
- Yidong Sun and Luping Ma, Minors of a class of Riordan arrays related to weighted partial Motzkin paths. Eur. J. Comb. 39, 157-169 (2014).
- Mark C. Wilson, Diagonal asymptotics for products of combinatorial classes.
- W.-J. Woan, Area of Catalan Paths, Discrete Math., 226 (2001), 439-444.
- Index entries for sequences related to Chebyshev polynomials.
Crossrefs
Programs
-
Haskell
a053121 n k = a053121_tabl !! n !! k a053121_row n = a053121_tabl !! n a053121_tabl = iterate (\row -> zipWith (+) ([0] ++ row) (tail row ++ [0,0])) [1] -- Reinhard Zumkeller, Feb 24 2012
-
Maple
T:=proc(n,k): if n+k mod 2 = 0 then (k+1)*binomial(n+1,(n-k)/2)/(n+1) else 0 fi end: for n from 0 to 13 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form; Emeric Deutsch, Oct 12 2006 F:=proc(l,p) if ((l-p) mod 2) = 1 then 0 else (p+1)*l!/( ( (l-p)/2 )! * ( (l+p)/2 +1)! ); fi; end; r:=n->[seq( F(n,p),p=0..n)]; [seq(r(n),n=0..15)]; # N. J. A. Sloane, Jan 29 2011 A053121 := proc(n,k) option remember; `if`(k>n or k<0,0,`if`(n=k,1, procname(n-1,k-1)+procname(n-1,k+1))) end proc: seq(print(seq(A053121(n,k), k=0..n)),n=0..12); # Peter Luschny, May 01 2011
-
Mathematica
a[n_, m_] /; n < m || OddQ[n-m] = 0; a[n_, m_] = (m+1) Binomial[n+1, (n-m)/2]/(n+1); Flatten[Table[a[n, m], {n, 0, 12}, {m, 0, n}]] [[1 ;; 90]] (* Jean-François Alcover, May 18 2011 *) T[0, 0] := 1; T[n_, k_]/;0<=k<=n := T[n, k] = T[n-1, k-1]+T[n-1, k+1]; T[n_, k_] := 0; Flatten@Table[T[n, k], {n, 0, 12}, {k, 0, n}] (* Oliver Seipel, Dec 31 2024 *)
-
PARI
T(n, m)=if(n
Charles R Greathouse IV, Mar 09 2016 -
Sage
def A053121_triangle(dim): M = matrix(ZZ,dim,dim) for n in (0..dim-1): M[n,n] = 1 for n in (1..dim-1): for k in (0..n-1): M[n,k] = M[n-1,k-1] + M[n-1,k+1] return M A053121_triangle(13) # Peter Luschny, Sep 19 2012
Formula
a(n, m) := 0 if n
a(n, m) = (4*(n-1)*a(n-2, m) + 2*(m+1)*a(n-1, m-1))/(n+m+2), a(n, m)=0 if n
G.f. for m-th column: c(x^2)*(x*c(x^2))^m, where c(x) = g.f. for Catalan numbers A000108.
G.f.: G(t,z) = c(z^2)/(1 - t*z*c(z^2)), where c(z) = (1 - sqrt(1-4*z))/(2*z) is the g.f. for the Catalan numbers (A000108). - Emeric Deutsch, Jun 16 2011
a(n, m) = a(n-1, m-1) + a(n-1, m+1) if n > 0 and m >= 0, a(0, 0)=1, a(0, m)=0 if m > 0, a(n, m)=0 if m < 0. - Henry Bottomley, Jan 25 2001
Sum_{k>=0} T(m,k)^2 = A000108(m). - Paul D. Hanna, Apr 23 2005
Sum_{k>=0} T(m, k)*T(n, k) = 0 if m+n is odd; Sum_{k>=0} T(m, k)*T(n, k) = A000108((m+n)/2) if m+n is even. - Philippe Deléham, May 26 2005
T(n,k)=sum{i=0..n, (-1)^(n-i)*C(n,i)*sum{j=0..i, C(i,j)*(C(i-j,j+k)-C(i-j,j+k+2))}}; Column k has e.g.f. BesselI(k,2x)-BesselI(k+2,2x). - Paul Barry, Feb 16 2006
Sum_{k=0..n} T(n,k)*(k+1) = 2^n. - Philippe Deléham, Mar 22 2007
Sum_{j>=0} T(n,j)*binomial(j,k) = A054336(n,k). - Philippe Deléham, Mar 30 2007
Sum_{k=0..n} T(n,k)^x = A000027(n+1), A001405(n), A000108(n), A003161(n), A129123(n) for x = 0,1,2,3,4 respectively. - Philippe Deléham, Nov 22 2009
Sum_{k=0..n} T(n,k)*x^k = A126930(n), A126120(n), A001405(n), A054341(n), A126931(n) for x = -1, 0, 1, 2, 3 respectively. - Philippe Deléham, Nov 28 2009
Recurrence for row polynomials C(n, x) := Sum_{m=0..n} a(n, m)*x^m = x*Sum_{k=0..n} Chat(k)*C(n-1-k, x), n >= 0, with C(-1, 1/x) = 1/x and Chat(k) = A000108(k/2) if n is even and 0 otherwise. From the o.g.f. of the row polynomials: G(z; x) := Sum_{n >= 0} C(n, x)*z^n = c(z^2)*(1 + x*z*G(z, x)), with the o.g.f. c of A000108. - Ahmet Zahid KÜÇÜK and Wolfdieter Lang, Aug 23 2015
The Boas-Buck recurrence (see a comment above) for the sequence of column m is: a(n, m) = ((m+1)/(n-m))*Sum_{j=0..n-1-m} (1/2)*(1 - (-1)^j)*binomial(j+1, (j+1)/2)* a(n-1-j, k), for n > m >= 0 and input a(m, m) = 1. - Wolfdieter Lang, Aug 11 2017
Sum_{m=1..n} a(n,m) = A037952(n). - R. J. Mathar, Sep 23 2021
Extensions
Edited by N. J. A. Sloane, Jan 29 2011
Comments