cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053131 Binomial coefficients C(2*n-8,9).

Original entry on oeis.org

10, 220, 2002, 11440, 48620, 167960, 497420, 1307504, 3124550, 6906900, 14307150, 28048800, 52451256, 94143280, 163011640, 273438880, 445891810, 708930508, 1101716330, 1677106640, 2505433700, 3679075400, 5317936260, 7575968400, 10648873950, 14783142660
Offset: 9

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings).

Crossrefs

Programs

  • Magma
    [Binomial(2*n-8,9): n in [9..40]]; // Vincenzo Librandi, Oct 07 2011
    
  • Mathematica
    Binomial[2*Range[9,40]-8,9] (* Harvey P. Dale, Mar 19 2012 *)
  • PARI
    for(n=9,50, print1(binomial(2*n-8,9), ", ")) \\ G. C. Greubel, Aug 26 2018

Formula

a(n) = binomial(2*n-8, 9) if n >= 9 else 0.
G.f.: (10+120*x+252*x^2+120*x^3+10*x^4)/(1-x)^10.
a(n) = 2*A053133(n).
a(n) = -A053123(n,9), n >= 9; a(n) := 0, n=0..8 (tenth column of shifted Chebyshev's S-triangle, decreasing order).
From Amiram Eldar, Oct 21 2022: (Start)
Sum_{n>=9} 1/a(n) = 223611/280 - 1152*log(2).
Sum_{n>=9} (-1)^(n+1)/a(n) = 72*log(2) - 13947/280. (End)