A053175 Catalan-Larcombe-French sequence.
1, 8, 80, 896, 10816, 137728, 1823744, 24862720, 346498048, 4911669248, 70560071680, 1024576061440, 15008466534400, 221460239482880, 3287994183188480, 49074667327062016, 735814252604162048
Offset: 0
Examples
G.f. = 1 + 8*x + 80*x^2 + 896*x^3 + 10816*x^4 + 137728*x^5 + 1823774*x^6 + ...
References
- P. J. Larcombe, D. R. French and E. J. Fennessey, The asymptotic behavior of the Catalan-Larcombe-French sequence {1, 8, 80, 896, 10816, ...}, Utilitas Mathematica, 60 (2001), 67-77.
- P. J. Larcombe, D. R. French and C. A. Woodham, A note on the asymptotic behavior of a prime factor decomposition of the general Catalan-Larcombe-French number, Congressus Numerantium, 156 (2002), 17-25.
Links
- T. D. Noe, Table of n, a(n) for n=0..200
- E. Catalan, Sur les Nombres de Segner, Rend. Circ. Mat. Pal., 1 (1887), 190-201. [From _Peter Luschny_, Jun 26 2009]
- Lane Clark, An asymptotic expansion for the Catalan-Larcombe-French sequence, Journal of Integer Sequences, Vol. 7 (2004), Article 04.2.1.
- A. F. Jarvis, P. J. Larcombe and D. R. French, Linear recurrences between two recent integer sequences, Congressus Numerantium, 169 (2004), 79-99.
- A. F. Jarvis, P. J. Larcombe and D. R. French, Applications of the a.g.m. of Gauss: some new properties of the Catalan-Larcombe-French sequence, Congressus Numerantium, 161 (2003), 151-162.
- A. F. Jarvis, P. J. Larcombe and D. R. French, Power series identities generated by two recent integer sequences, Bulletin ICA, 43 (2005), 85-95.
- A. F. Jarvis, P. J. Larcombe and D. R. French, On Small Prime Divisibility of the Catalan-Larcombe-French sequence, Indian Journal of Mathematics, 47 (2005), 159-181.
- A. F. Jarvis, P. J. Larcombe and D. R. French, A short proof of the 2-adic valuation of the Catalan-Larcombe-French number, Indian Journal of Mathematics, 48 (2006), 135-138.
- F. Jarvis, H. A. Verrill, Supercongruences for the Catalan-Larcombe-French numbers, Ramanujan J (22) (2010) 171.
- Xiao-Juan Ji, Zhi-Hong Sun, Congruences for Catalan-Larcombe-French numbers, arXiv:1505.00668 [math.NT], 2015 and JIS vol 19 (2016) # 16.3.4
- P. J. Larcombe, A new asymptotic relation between two recent integer sequences, Congressus Numerantium, 175 (2005), 111-116.
- Peter J. Larcombe, Daniel R. French, On the “Other” Catalan Numbers: A Historical Formulation Re-Examined, Congressus Numerantium, 143 (2000), 33-64.
- P. J. Larcombe and D. R. French, On the integrality of the Catalan-Larcombe-French sequence {1, 8, 80, 896, 10816, ...}, Congressus Numerantium, 148 (2001), 65-91.
- P. J. Larcombe and D. R. French, A new generating function for the Catalan-Larcombe-French sequence: proof of a result by Jovovic, Congressus Numerantium, 166 (2004), 161-172.
- Guo-Shuai Mao, Proof of two supercongruences conjectured by Z.-W.Sun involving Catalan-Larcombe-French numbers, arXiv:1511.06222 [math.NT], 2015.
- Brian Yi Sun, Baoyindureng Wu, Two-log-convexity of the Catalan-Larcombe-French sequence, arXiv:1602.04909 [math.CO], 2016. Also Journal of Inequalities and Applications, 2015, 2015:404; DOI: 10.1186/s13660-015-0920-0.
- Zhi-Hong Sun, Congruences for Apéry-like numbers, arXiv:1803.10051 [math.NT], 2018.
- N. M. Temme, Examples of 3_F_2-polynomials, Asymptotic Methods for Integrals, Chapter 13, pp. 167-179 (2014).
- Yang Wen, On the Log-Concavity of the Root of the Catalan-Larcombe-French Numbers, American Journal of Mathematical and Computer Modelling, 2017; 2(4): 95-98.
- E. X. W. Xia and O. X. M. Yao, A Criterion for the Log-Convexity of Combinatorial Sequences, The Electronic Journal of Combinatorics, 20 (2013), #P3.
Programs
-
Maple
a := proc(n) option remember; if n = 0 then 1 elif n = 1 then 8 else (8*(3*n^2 -3*n+1)*a(n-1)-128*(n-1)^2*a(n-2))/n^2 fi end; # Peter Luschny, Jun 26 2009
-
Mathematica
a[ n_] := SeriesCoefficient[ EllipticK[ (8 x /(1 - 8 x))^2] / ((1 - 8 x) Pi/2), {x, 0, n}]; (* Michael Somos, Aug 01 2011 *) a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[ 8 x] BesselI[ 0, 4 x]^2, {x, 0, n}]]; (* Michael Somos, Aug 01 2011 *) Table[(-8)^n Sqrt[Pi] HypergeometricPFQRegularized[{1/2, -n, -n}, {1, 1/2 - n}, -1]/n!, {n, 0, 20}] (* Vladimir Reshetnikov, May 21 2016 *)
-
PARI
{a(n) = if( n<0, 0, polcoeff( 1 / agm( 1, 1 - 16*x + x * O(x^n)), n))}; /* Michael Somos, Feb 12 2003 */
-
PARI
{a(n) = if( n<0, 0, polcoeff( sum( k=0, n, binomial( 2*k ,k)^2 * (2*x - 16*x^2)^k, x * O(x^n)), n))}; /* Michael Somos, Mar 04 2003 */
Formula
G.f.: 1 / AGM(1, 1 - 16*x) = 2 * EllipticK(8*x / (1-8*x)) / ((1-8*x)*Pi), where AGM(x, y) is the arithmetic-geometric mean of Gauss and Legendre. Cf. A081085, A089602. - Michael Somos, Mar 04 2003 and Vladeta Jovovic, Dec 30 2003
E.g.f.: exp(8*x)*BesselI(0, 4*x)^2. - Vladeta Jovovic, Aug 20 2003
a(n)*n^2 = a(n-1)*8*(3*n^2 - 3*n + 1) - a(n-2)*128*(n-1)^2. - Michael Somos, Apr 01 2003
Exponential convolution of A059304 with itself: Sum(2^n*binomial(2*n, n)*x^n/n!, n=0..infinity)^2 = (BesselI(0, 4*x)*exp(4*x))^2 = hypergeom([1/2], [1], 8*x)^2. - Vladeta Jovovic, Sep 09 2003
a(n) ~ 2^(4n+1)/(Pi*n). - Vaclav Kotesovec, Oct 09 2012
a(n) = 2^n*Sum_{k=0..n} C(n,k)*C(2*k,k)*C(2(n-k),n-k), where C(n,k)=n!/(k!*(n-k)!). This formula has been proved via the Zeilberger algorithm (both sides of the equality satisfy the same recurrence relation). a(n)/2^n also has another expression: Sum_{k=0..floor(n/2)} C(n,2*k)*C(2*k,k)^2*4^(n-2*k). - Zhi-Wei Sun, Mar 21 2013
a(n) = (-1)^n*Sum_{k=0..n}C(2*k,k)*C(2(n-k),n-k)*C(k,n-k)*(-4)^k. I have proved this new formula via the Zeilberger algorithm. - Zhi-Wei Sun, Nov 19 2014
Comments