cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A089602 Expansion of L(x)^(1/4), where L(x) = o.g.f. for A053175.

Original entry on oeis.org

1, 2, 14, 132, 1446, 17340, 220524, 2919240, 39761094, 553080044, 7818246436, 111929301688, 1618972088028, 23616939932376, 346986771074328, 5129262870441360, 76223971339368006, 1137977844577647948, 17058656523389665268, 256642078290095158360, 3873624648355421605492
Offset: 0

Views

Author

Vladeta Jovovic, Dec 30 2003

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[(EllipticK[(8*x/(1 - 8*x))^2]/((1 - 8*x)*Pi/2))^(1/4), {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 26 2019 *)
  • PARI
    Vec(1/agm(1,1-16*x+O(x^66))^(1/4)) \\ Joerg Arndt, Aug 14 2013

Formula

G.f.: (2*EllipticK(8*x/(1-8*x))/((1-8*x)*Pi))^(1/4).
a(n) ~ 2^(4*n - 7/4) / (Pi^(1/4) * n * log(n)^(3/4)) * (1 - (gamma/2 + log(2)) / log(n) + (3*gamma^2/8 + 3*log(2)*gamma/2 + 3*log(2)^2/2 - Pi^2/16) / log(n)^2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Sep 29 2019

A090004 Expansion of L(x)^(1/2), where L(x) is the g.f. for the Catalan Larcombe-French sequence A053175.

Original entry on oeis.org

1, 4, 32, 320, 3616, 44160, 568320, 7587840, 104042496, 1455308800, 20671234048, 297204973568, 4315444576256, 63173752913920, 931171553771520, 13806071300751360, 205737584679321600, 3079516590086553600, 46275305227975393280, 697790255614687969280, 10554814464110079508480
Offset: 0

Views

Author

Peter J Larcombe, Jan 19 2004

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[(EllipticK[(8*x/(1 - 8*x))^2]/((1 - 8*x)*Pi/2))^(1/2), {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 26 2019 *)
  • PARI
    Vec( 1/agm(1,1-16*x+O(x^66))^(1/2) ) \\ Joerg Arndt, Aug 14 2013

Formula

a(n) = 2^n * A089603(n). - Seiichi Manyama, Jan 13 2019
a(n) ~ 2^(4*n - 1/2) / (n * sqrt(Pi*log(n))) * (1 - (gamma/2 + log(2))/log(n) + (3*gamma^2/8 + 3*log(2)*gamma/2 + 3*log(2)^2/2 - Pi^2/16) / log(n)^2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Sep 29 2019

Extensions

More terms from Christian G. Bower, Jan 19 2004

A081085 Expansion of 1 / AGM(1, 1 - 8*x) in powers of x.

Original entry on oeis.org

1, 4, 20, 112, 676, 4304, 28496, 194240, 1353508, 9593104, 68906320, 500281280, 3664176400, 27033720640, 200683238720, 1497639994112, 11227634469668, 84509490017680, 638344820152784, 4836914483890112, 36753795855173776, 279985580271435584, 2137790149251471680
Offset: 0

Views

Author

Michael Somos, Mar 04 2003

Keywords

Comments

AGM(x, y) is the arithmetic-geometric mean of Gauss and Legendre.
This is the Taylor expansion of a special point on a curve described by Beauville. - Matthijs Coster, Apr 28 2004
This is the exponential (also known as binomial) convolution of sequence A000984 (central binomial) with itself. See the V. Jovovic e.g.f. and a(n) formulas given below. - Wolfdieter Lang, Jan 13 2012
This is one of the Apery-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017
The recursion (n+1)^2 * a(n+1) = (12*n^2+12*n+4) * a(n) - 32*n^2*a(n-1) with n=0 has zero coefficient for a(-1) and thus a(-1) is not determined uniquely by it, but defining a(-1) = 2^(-5/2) makes a(n) = a(-1-n) * 32^(n-1/2) true for all n in Z. - Michael Somos, Apr 05 2022

Examples

			G.f. = A(x) = 1 + 4*x + 20*x^2 + 112*x^3 + 676*x^4 + 4304*x^5 + 28496*x^6 + ...
		

References

  • Matthijs Coster, Over 6 families van krommen [On 6 families of curves], Master's Thesis (unpublished), Aug 26 1983.

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

Programs

  • Maple
    seq(simplify(binomial(2*n, n)*hypergeom([ -n, -n, 1/2], [1, -n+1/2], -1)), n = 0..22); # Peter Bala, Jul 25 2024
  • Mathematica
    Table[Sum[Binomial[n,k]*Binomial[2*n-2*k,n-k]*Binomial[2*k,k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 13 2012 *)
    a[ n_] := SeriesCoefficient[ Hypergeometric2F1[ 1/2, 1/2, 1, 16 x (1 - 4 x)], {x, 0, n}]; (* Michael Somos, Oct 25 2014 *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ 1 / NestWhile[ {(#[[1]] + #[[2]])/2, Sqrt[#[[1]] #[[2]]]} &, {1, Series[ 1 - 8 x, {x, 0, n}]}, #[[1]] =!= #[[2]] &] // First, {x, 0, n}]]; (* Michael Somos, Oct 27 2014 *)
    CoefficientList[Series[2*EllipticK[1/(1 - 1/(4*x))^2] / (Pi*(1 - 4*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Jan 13 2019 *)
    a[n_] := Binomial[2 n, n] HypergeometricPFQ[{1/2, -n, -n},{1, 1/2 - n}, -1];
    Table[a[n], {n, 0, 20}] (* Peter Luschny, Apr 05 2022 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / agm( 1, 1 - 8 * x + x * O(x^n)), n))};
    
  • PARI
    {a(n) = if( n<0,0, 4^n * sum( k=0, n\2, binomial( n, 2*k) * binomial( 2*k, k)^2 / 16^k))};
    
  • PARI
    {a(n)=n!*polcoeff(sum(k=0,n,(2*k)!*x^k/(k!)^3 +x*O(x^n))^2,n)} /* Paul D. Hanna, Sep 04 2009 */
    
  • Python
    from math import comb
    def A081085(n): return sum((1<<(n-(m:=k<<1)<<1))*comb(n,m)*comb(m,k)**2 for k in range((n>>1)+1)) # Chai Wah Wu, Jul 09 2023

Formula

G.f.: 1 / AGM(1, 1 - 8*x).
E.g.f.: exp(4*x)*BesselI(0, 2*x)^2. - Vladeta Jovovic, Aug 20 2003
a(n) = Sum_{k=0..n} binomial(n, k)*binomial(2*n-2*k, n-k)*binomial(2*k, k) = binomial(2*n, n)*hypergeom([ -n, -n, 1/2], [1, -n+1/2], -1). - Vladeta Jovovic, Sep 16 2003
D-finite with recurrence (n+1)^2 * a(n+1) = (12*n^2+12*n+4) * a(n) - 32*n^2*a(n-1). - Matthijs Coster, Apr 28 2004
E.g.f.: [Sum_{n>=0} binomial(2n,n)*x^n/n! ]^2. - Paul D. Hanna, Sep 04 2009
G.f.: Gaussian Hypergeometric function 2F1(1/2, 1/2; 1; 16*x-64*x^2). - Mark van Hoeij, Oct 24 2011
a(n) = 2^(-n) * A053175(n).
a(n) ~ 2^(3*n+1)/(Pi*n). - Vaclav Kotesovec, Oct 13 2012
0 = x*(x+4)*(x+8)*y'' + (3*x^2 + 24*x + 32)*y' + (x+4)*y, where y(x) = A(x/-32). - Gheorghe Coserea, Aug 26 2016
a(n) = Sum_{k=0..floor(n/2)} 4^(n-2*k)*binomial(n, 2*k)*binomial(2*k, k)^2. - Seiichi Manyama, Apr 02 2017
a(n) = (1/Pi)^2*Integral_{0 <= x, y <= Pi} (4*cos(x)^2 + 4*cos(y)^2)^n dx dy. - Peter Bala, Feb 10 2022
a(n) = a(-1-n)*32^(n-1/2) and 0 = +a(n)*(+a(n+1)*(+32768*a(n+2) -23552*a(n+3) +3072*a(n+4)) +a(n+2)*(-8192*a(n+2) +8448*a(n+3) -1248*a(n+4)) +a(n+3)*(-512*a(n+3) +96*a(n+4))) +a(n+1)*(+a(n+1)*(-5120*a(n+2) +3840*a(n+3) -512*a(n+4)) +a(n+2)*(+1536*a(n+2) -1728*a(n+3) +264*a(n+4)) +a(n+3)*(+120*a(n+3) -23*a(n+4))) +a(n+2)*(+a(n+2)*(-32*a(n+2) +48*a(n+3) -8*a(n+4)) +a(n+3)*(-5*a(n+3) +a(n+4))) for all n in Z. - Michael Somos, Apr 04 2022
From Bradley Klee, Jun 05 2023: (Start)
The g.f. T(x) obeys a period-annihilating ODE:
0=4*(-1 + 8*x)*T(x) + (1 - 24*x + 96*x^2)*T'(x) + x*(-1 + 4*x)*(-1 + 8*x)*T''(x).
The periods ODE can be derived from the following Weierstrass data:
g2 = 3*(1 - 16*(1 - 8*x)^2 + 16*(1 - 8*x)^4);
g3 = 1 + 30*(1 - 8*x)^2 - 96*(1 - 8*x)^4 + 64*(1 - 8*x)^6;
which determine an elliptic surface with four singular fibers. (End)
G.f.: Sum_{n>=0} binomial(2*n,n)^2 * x^n * (1 - 4*x)^n. - Paul D. Hanna, Apr 18 2024
From Peter Bala, Jul 25 2024: (Start)
a(n) = 2*Sum_{k = 1..n} (k/n)*binomial(n, k)*binomial(2*n-2*k, n-k)*binomial(2*k, k) for n >= 1.
a(n-1) = (1/2)*Sum_{k = 1..n} (k/n)^2*binomial(n, k)*binomial(2*n-2*k, n-k)* binomial(2*k, k) for n >= 1. Cf. A002895. (End)

A014330 Exponential convolution of Catalan numbers with themselves.

Original entry on oeis.org

1, 2, 6, 22, 92, 424, 2108, 11134, 61748, 356296, 2123720, 13002840, 81417520, 519550880, 3369559864, 22161337742, 147544048324, 992923683912, 6746101933304, 46226667046360, 319199694771696, 2219445498261152, 15529758665102416, 109291258152550712
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A014330:= func< n | (&+[Binomial(n,k)*Catalan(k)*Catalan(n-k): k in [0..n]]) >;
    [A014330(n): n in [0..40]]; // G. C. Greubel, Jan 06 2023
    
  • Mathematica
    Table[Sum[Binomial[n, k]*Binomial[2*k, k]/(k+1)*Binomial[2*n-2*k, n-k]/(n-k+1),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Feb 25 2014 *)
  • PARI
    A014330(n)=sum(k=0,n,binomial(n,k)*A000108(k)*A000108(n-k))  \\ M. F. Hasler, Jan 13 2012
    
  • SageMath
    def c(n): return catalan_number(n)
    def A014330(n): return sum( binomial(n,k)*c(k)*c(n-k) for k in range(n+1))
    [A014330(n) for n in range(41)] # G. C. Greubel, Jan 06 2023

Formula

From Vladeta Jovovic, Jan 01 2004: (Start)
E.g.f.: exp(4*x)*(BesselI(0, 2*x) - BesselI(1, 2*x))^2.
a(n) = Sum_{k=0..n} binomial(n, k)*binomial(2*k, k)/(k+1)*binomial(2*n-2*k, n-k)/(n-k+1).
a(n) = 4^n*Sum_{k=0..n} (-4)^(-k)*binomial(n, k)*binomial(k, floor(k/2))*binomial(k+1, floor((k+1)/2)).
a(n) = binomial(2*n, n)/(n+1)*hypergeometric3F2([-n-1, -n, 1/2], [2, 1/2-n], -1). (End)
(n + 1)*(n + 2)*a(n) = 4*(3*n^2 + n - 1)*a(n - 1) - 32*(n - 1)^2*a(n - 2). - Vladeta Jovovic, Jul 15 2004
a(n) = Sum_{k=0..n} binomial(n,k)*A000108(k)*A000108(n-k). - Philippe Deléham, Aug 23 2006
a(n) = (4*A053175(n) - A053175(n+1)/4) / ((n+2)*2^n). - Mark van Hoeij, Jul 02 2010
G.f.: (1-6*x)*hypergeometric2F1([1/2, 1/2],[2],16*x^2/(4*x-1)^2)/(2*x*(4*x-1)) - x*(8*x-1)*hypergeometric2F1([3/2, 3/2],[3],16*x^2/(4*x-1)^2)/(4*x-1)^3 + 1/(2*x). - Mark van Hoeij, Oct 25 2011
E.g.f.: hypergeometric1F1([1/2],[2],4*x)^2, coinciding with the above given e.g.f. - Wolfdieter Lang, Jan 13 2012
a(n) ~ 8^(n+1) / (Pi*n^3). - Vaclav Kotesovec, Feb 25 2014

Extensions

More terms from Vincenzo Librandi, Feb 27 2014

A065409 Fennessey-Larcombe-French sequence.

Original entry on oeis.org

1, 8, 144, 2432, 40000, 649728, 10486784, 168681472, 2708038656, 43425996800, 695894425600, 11146676797440, 178493059563520, 2857665426882560, 45744737668300800, 732196083173687296, 11718755500209471488
Offset: 0

Views

Author

Peter J Larcombe, Nov 14 2001

Keywords

Comments

Numbers appearing as coefficients in the series expansion of an elliptic integral of the second kind. Defining f(x; c) = [1 - c^2*sin^2(x)]^(1/2), consider the function E(c) obtained by integrating f(x; c) with respect to x between 0 and Pi/2. E(c) is transformed and written as a power series in c (through an intermediate variable) which acts as a generating function for the sequence.
E'(k) is complete elliptic integral of second kind evaluated at k'. - Michael Somos, Mar 04 2003

References

  • A. F. Jarvis, P. J. Larcombe and D. R. French, Linear recurrences between two recent integer sequences, Congressus Numerantium, 169 (2004), 79-99.
  • A. F. Jarvis, P. J. Larcombe and D. R. French, Power series identities generated by two recent integer sequences, Bulletin ICA, 43 (2005), 85-95.
  • P. J. Larcombe, A new asymptotic relation between two recent integer sequences, Congressus Numerantium, 175 (2005), 111-116.
  • P. J. Larcombe, D. R. French and E. J. Fennessey, The Fennessey-Larcombe-French sequence {1, 8, 144, 2432, 40000, ...}: formulation and asymptotic form, Congressus Numerantium, 158 (2002), 179-190.
  • P. J. Larcombe, D. R. French and E. J. Fennessey, The Fennessey-Larcombe-French sequence {1, 8, 144, 2432, 40000, ...}: a recursive formulation and prime factor decomposition, Congressus Numerantium, 160 (2003), 129-137.

Crossrefs

Programs

  • Mathematica
    a[n_] := 8^n*HypergeometricPFQ[{1/2, 5/4, 1/2-n/2, -n/2}, {1/4, 1, 1}, 1 ]; Table[ a[n], {n, 0, 16}] (* Jean-François Alcover, Jan 31 2012, from first formula *)
    Table[2^n Sum[(4k^2-2k-1)/(2k-1) Binomial[n,k]Binomial[2n-2k,n-k] Binomial[ 2k,k],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Mar 18 2012 *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ Binomial[2 k, k]^2 / (1 - 2 k) (2 x - 16 x^2)^k, {k, 0, n}] / (1 - 16 x), {x, 0, n}]]; (*Michael Somos, Jul 10 2017 *)
    a[ n_] := If [n < 0, 0, n! SeriesCoefficient[ Exp[8 x] BesselI[0, 4 x] (BesselI[0, 4 x] + 16 x BesselI[1, 4 x]), {x, 0, n}]]; (* Michael Somos, Jul 10 2017 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A =a gm(1, 1 - 16*x + x*O(x^n)); polcoeff((1 - 16*x - 2*x*(1 - 8*x) * log(A)') / A, n))}; /* Michael Somos, Mar 04 2003 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=0, n, binomial(2*k,k)^2 / (1 - 2*k) * (2*x - 16*x^2)^k, x*O(x^n)) / (1 - 16*x), n))}; /* Michael Somos, Mar 04 2003 */

Formula

a(n) = 8^n * 4F3( [5/4, 1/2, (1/2)-n/2, -n/2], [1, 1, 1/4] | 1 ).
G.f.: F(-1/2, 1/2; 1; 32*x - 256*x^2) / (1 - 16*x) = E'(1 - 16*x) / (Pi/2 * (1 - 16*x)). - Michael Somos, Mar 04 2003
a(n)*(n^3 - n^2) = a(n-1)*(8 - 32*n^2 + 24*n^3) + a(n-2)*(256*n^2 - 128*n^3). - Michael Somos, Mar 04 2003
a(n) = 2^n*Sum_{k=0..n} (4*k^2-2*k-1)/(2*k-1)*binomial(n, k)*binomial(2*n-2*k, n-k)*binomial(2*k, k). - Vladeta Jovovic, Jun 02 2005
E.g.f.: exp(8*x)*BesselI(0, 4*x)*(BesselI(0, 4*x)+16*x*BesselI(1, 4*x)). - Vladeta Jovovic, Jun 02 2005
a(n) = (n+1)^2*(A053175(n+1)-8*A053175(n))/(8*n) for n>0. - Mark van Hoeij, Oct 31 2011
a(n) ~ 2^(4*n+1)/Pi. - Vaclav Kotesovec, Aug 13 2013

A228289 Determinant of the p_n X p_n matrix with (i,j)-entry equal to D(i+j) for all i,j = 0,...,p_n-1, where D(k) = A002895(k) is the k-th Domb number and p_n is the n-th prime.

Original entry on oeis.org

12, 2448, 428587718400, 4994319435309277891448832, 191901511752240055024005979549622856313555581586068578283027431424, 637213222716753775758429677219909335140503764595701930312765250413280716374852064945052319744
Offset: 1

Views

Author

Zhi-Wei Sun, Aug 19 2013

Keywords

Comments

Conjecture: If p_n == 1 (mod 3) and p_n = x^2 + 3*y^2 with x and y integers, then we have a(n) == (-1)^{(p_n-1)/2}*(4*x^2-2*p_n) (mod p_n^2). In the case p_n == 2 (mod 3), we have a(n) == 0 (mod p_n^2).
Zhi-Wei Sun also made the following similar conjecture:
If p is an odd prime and b(p) is the p X p determinant with (i,j)-entry equal to A053175(i+j) for all i,j = 0,...,p-1, then we have the congruence b(p) == (-1)^{(p-1)/2} (mod p^2).

References

  • Zhi-Wei Sun, Conjectures and results on x^2 mod p^2 with 4*p = x^2 + d*y^2, in: Number Theory and Related Area (eds., Y. Ouyang, C. Xing, F. Xu and P. Zhang), Higher Education Press & International Press, Beijing and Boston, 2013, pp. 147-195.

Crossrefs

Programs

  • Mathematica
    d[n_]:=Sum[Binomial[n,k]^2*Binomial[2k,k]Binomial[2(n-k),n-k],{k,0,n}]
    a[n_]:=Det[Table[d[i+j],{i,0,Prime[n]-1},{j,0,Prime[n]-1}]]
    Table[a[n],{n,1,8}]

A323385 Expansion of AGM(1,1-16*x) (where AGM denotes the arithmetic-geometric mean).

Original entry on oeis.org

1, -8, -16, -128, -1344, -15872, -199680, -2613248, -35148800, -482500608, -6730072064, -95094702080, -1358152794112, -19573573681152, -284284750397440, -4156674357067776, -61133523873169408, -903754859816157184, -13421680957337894912, -200140704802846801920
Offset: 0

Views

Author

Seiichi Manyama, Jan 13 2019

Keywords

Crossrefs

Convolution inverse of A053175.

Programs

  • Maple
    R:= Pi*(1-8*x)/(2*EllipticK(-8*x/(1-8*x))):
    S:= series(R,x,31):
    seq(coeff(S,x,j),j=0..30); # Robert Israel, Jan 13 2019
  • Mathematica
    CoefficientList[Series[Pi*(1 - 16*x) / (2*EllipticK[1 - 1/(1 - 16*x)^2]), {x, 0, 25}], x] (* Vaclav Kotesovec, Sep 28 2019 *)
  • PARI
    N=66; x='x+O('x^N); Vec(agm(1, 1-16*x))

Formula

a(n) = 2^n * A060691(n).
a(n) ~ -Pi * 2^(4*n-1) / (n * log(n)^2) * (1 - (2*gamma + 4*log(2))/log(n) + (3*gamma^2 + 12*log(2)*gamma + 12*log(2)^2 - Pi^2/2) / log(n)^2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Sep 29 2019

A228156 Expansion of sqrt((1+4*x)/AGM(1+4*x,1-4*x)) where AGM denotes the arithmetic-geometric mean.

Original entry on oeis.org

1, 2, 0, 8, 2, 68, 32, 720, 464, 8480, 6656, 106368, 95912, 1390928, 1392512, 18734144, 20371650, 257955716, 300101760, 3613109008, 4448177412, 51302395528, 66289160512, 736588435360, 992578330048, 10674012880512, 14924667774976, 155890890782720, 225244659392784, 2291995151532576, 3410654921389824
Offset: 0

Views

Author

Joerg Arndt, Aug 14 2013

Keywords

Comments

Convolution square is A092266.

Crossrefs

Cf. A092266 (1+4*x)/AGM(1+4*x,1-4*x).
Cf. A081085 1/AGM(1,1-8*x), A053175 1/AGM(1,1-16*x), A090004 1/AGM(1,1-16*x)^(1/2), A089602 1/AGM(1,1-16*x)^(1/4).

Programs

  • Mathematica
    CoefficientList[Series[Sqrt[2*(1 + 4*x)*EllipticK[1 - (1 + 4*x)^2/(1 - 4*x)^2] / (Pi*(1 - 4*x))], {x, 0, 30}], x] (* Vaclav Kotesovec, Sep 27 2019 *)
  • PARI
    Vec( 1/agm(1,(1-4*x)/(1+4*x)+O(x^66))^(1/2) ) \\ Joerg Arndt, Aug 14 2013

Formula

a(n) ~ 2^(2*n - 1/2) / (n*sqrt(Pi*log(n))) * (1 - (gamma + 3*log(2)) / (2*log(n)) + (3*gamma^2/8 + 9*gamma*log(2)/4 + 27*log(2)^2/8 - 1/16*Pi^2) / log(n)^2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Sep 29 2019
Showing 1-8 of 8 results.