cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A053175 Catalan-Larcombe-French sequence.

Original entry on oeis.org

1, 8, 80, 896, 10816, 137728, 1823744, 24862720, 346498048, 4911669248, 70560071680, 1024576061440, 15008466534400, 221460239482880, 3287994183188480, 49074667327062016, 735814252604162048
Offset: 0

Views

Author

Peter J Larcombe, Nov 12 2001

Keywords

Comments

These numbers were proposed as 'Catalan' numbers by an associate of Catalan. They appear as coefficients in the series expansion of an elliptic integral of the first kind. Defining f(x; c) = 1 /(1 - c^2*sin^2(x))^(1/2), consider the function I(c) obtained by integrating f(x; c) with respect to x between 0 and Pi/2. I(c) is transformed and written as a power series in c (through an intermediate variable) which acts as a generating function for the sequence.
Conjecture: Let P(n) be the (n+1) X (n+1) Hankel-type determinant with (i,j)-entry equal to a(i+j) for all i,j = 0,...,n. Then P(n)/2^(n*(n+3)) is a positive odd integer. - Zhi-Wei Sun, Aug 14 2013

Examples

			G.f. = 1 + 8*x + 80*x^2 + 896*x^3 + 10816*x^4 + 137728*x^5 + 1823774*x^6 + ...
		

References

  • P. J. Larcombe, D. R. French and E. J. Fennessey, The asymptotic behavior of the Catalan-Larcombe-French sequence {1, 8, 80, 896, 10816, ...}, Utilitas Mathematica, 60 (2001), 67-77.
  • P. J. Larcombe, D. R. French and C. A. Woodham, A note on the asymptotic behavior of a prime factor decomposition of the general Catalan-Larcombe-French number, Congressus Numerantium, 156 (2002), 17-25.

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n = 0 then 1 elif n = 1 then 8 else (8*(3*n^2 -3*n+1)*a(n-1)-128*(n-1)^2*a(n-2))/n^2 fi end; # Peter Luschny, Jun 26 2009
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticK[ (8 x /(1 - 8 x))^2] / ((1 - 8 x) Pi/2), {x, 0, n}]; (* Michael Somos, Aug 01 2011 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[ 8 x] BesselI[ 0, 4 x]^2, {x, 0, n}]]; (* Michael Somos, Aug 01 2011 *)
    Table[(-8)^n Sqrt[Pi] HypergeometricPFQRegularized[{1/2, -n, -n}, {1, 1/2 - n}, -1]/n!, {n, 0, 20}] (* Vladimir Reshetnikov, May 21 2016 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / agm( 1, 1 - 16*x + x * O(x^n)), n))}; /* Michael Somos, Feb 12 2003 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum( k=0, n, binomial( 2*k ,k)^2 * (2*x - 16*x^2)^k, x * O(x^n)), n))}; /* Michael Somos, Mar 04 2003 */

Formula

G.f.: 1 / AGM(1, 1 - 16*x) = 2 * EllipticK(8*x / (1-8*x)) / ((1-8*x)*Pi), where AGM(x, y) is the arithmetic-geometric mean of Gauss and Legendre. Cf. A081085, A089602. - Michael Somos, Mar 04 2003 and Vladeta Jovovic, Dec 30 2003
E.g.f.: exp(8*x)*BesselI(0, 4*x)^2. - Vladeta Jovovic, Aug 20 2003
a(n)*n^2 = a(n-1)*8*(3*n^2 - 3*n + 1) - a(n-2)*128*(n-1)^2. - Michael Somos, Apr 01 2003
Exponential convolution of A059304 with itself: Sum(2^n*binomial(2*n, n)*x^n/n!, n=0..infinity)^2 = (BesselI(0, 4*x)*exp(4*x))^2 = hypergeom([1/2], [1], 8*x)^2. - Vladeta Jovovic, Sep 09 2003
a(n) ~ 2^(4n+1)/(Pi*n). - Vaclav Kotesovec, Oct 09 2012
a(n) = 2^n*Sum_{k=0..n} C(n,k)*C(2*k,k)*C(2(n-k),n-k), where C(n,k)=n!/(k!*(n-k)!). This formula has been proved via the Zeilberger algorithm (both sides of the equality satisfy the same recurrence relation). a(n)/2^n also has another expression: Sum_{k=0..floor(n/2)} C(n,2*k)*C(2*k,k)^2*4^(n-2*k). - Zhi-Wei Sun, Mar 21 2013
a(n) = (-1)^n*Sum_{k=0..n}C(2*k,k)*C(2(n-k),n-k)*C(k,n-k)*(-4)^k. I have proved this new formula via the Zeilberger algorithm. - Zhi-Wei Sun, Nov 19 2014

A089603 G.f.: sqrt(1/agm(1, 1-8*x)) = sqrt(o.g.f. for A081085).

Original entry on oeis.org

1, 2, 8, 40, 226, 1380, 8880, 59280, 406416, 2842400, 20186752, 145119616, 1053575336, 7711639760, 56834201280, 421327859520, 3139306406850, 23494847031300, 176526280319120, 1330929290036560, 10065855468854980, 76341682531733960, 580460500453098080
Offset: 0

Views

Author

N. J. A. Sloane, Dec 31 2003

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Sqrt[2*EllipticK[1/(1 - 1/(4*x))^2]/(Pi*(1 - 4*x))], {x, 0, 25}], x] (* Vaclav Kotesovec, Sep 26 2019 *)
    nmax = 25; CoefficientList[Series[Sqrt[Hypergeometric2F1[1/2, 1/2, 1, 16*x*(1 - 4*x)]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 26 2019 *)
  • PARI
    Vec( 1/agm(1,1-8*x+O(x^66))^(1/2) ) \\ Joerg Arndt, Aug 14 2013

Formula

a(n) ~ 2^(3*n - 1/2) / (n * sqrt(Pi*log(n))) * (1 - (gamma/2 + log(2))/log(n) + (3*gamma^2/8 + 3*log(2)*gamma/2 + 3*log(2)^2/2 - Pi^2/16) / log(n)^2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Sep 29 2019

A090004 Expansion of L(x)^(1/2), where L(x) is the g.f. for the Catalan Larcombe-French sequence A053175.

Original entry on oeis.org

1, 4, 32, 320, 3616, 44160, 568320, 7587840, 104042496, 1455308800, 20671234048, 297204973568, 4315444576256, 63173752913920, 931171553771520, 13806071300751360, 205737584679321600, 3079516590086553600, 46275305227975393280, 697790255614687969280, 10554814464110079508480
Offset: 0

Views

Author

Peter J Larcombe, Jan 19 2004

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[(EllipticK[(8*x/(1 - 8*x))^2]/((1 - 8*x)*Pi/2))^(1/2), {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 26 2019 *)
  • PARI
    Vec( 1/agm(1,1-16*x+O(x^66))^(1/2) ) \\ Joerg Arndt, Aug 14 2013

Formula

a(n) = 2^n * A089603(n). - Seiichi Manyama, Jan 13 2019
a(n) ~ 2^(4*n - 1/2) / (n * sqrt(Pi*log(n))) * (1 - (gamma/2 + log(2))/log(n) + (3*gamma^2/8 + 3*log(2)*gamma/2 + 3*log(2)^2/2 - Pi^2/16) / log(n)^2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Sep 29 2019

Extensions

More terms from Christian G. Bower, Jan 19 2004

A323385 Expansion of AGM(1,1-16*x) (where AGM denotes the arithmetic-geometric mean).

Original entry on oeis.org

1, -8, -16, -128, -1344, -15872, -199680, -2613248, -35148800, -482500608, -6730072064, -95094702080, -1358152794112, -19573573681152, -284284750397440, -4156674357067776, -61133523873169408, -903754859816157184, -13421680957337894912, -200140704802846801920
Offset: 0

Views

Author

Seiichi Manyama, Jan 13 2019

Keywords

Crossrefs

Convolution inverse of A053175.

Programs

  • Maple
    R:= Pi*(1-8*x)/(2*EllipticK(-8*x/(1-8*x))):
    S:= series(R,x,31):
    seq(coeff(S,x,j),j=0..30); # Robert Israel, Jan 13 2019
  • Mathematica
    CoefficientList[Series[Pi*(1 - 16*x) / (2*EllipticK[1 - 1/(1 - 16*x)^2]), {x, 0, 25}], x] (* Vaclav Kotesovec, Sep 28 2019 *)
  • PARI
    N=66; x='x+O('x^N); Vec(agm(1, 1-16*x))

Formula

a(n) = 2^n * A060691(n).
a(n) ~ -Pi * 2^(4*n-1) / (n * log(n)^2) * (1 - (2*gamma + 4*log(2))/log(n) + (3*gamma^2 + 12*log(2)*gamma + 12*log(2)^2 - Pi^2/2) / log(n)^2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Sep 29 2019

A228156 Expansion of sqrt((1+4*x)/AGM(1+4*x,1-4*x)) where AGM denotes the arithmetic-geometric mean.

Original entry on oeis.org

1, 2, 0, 8, 2, 68, 32, 720, 464, 8480, 6656, 106368, 95912, 1390928, 1392512, 18734144, 20371650, 257955716, 300101760, 3613109008, 4448177412, 51302395528, 66289160512, 736588435360, 992578330048, 10674012880512, 14924667774976, 155890890782720, 225244659392784, 2291995151532576, 3410654921389824
Offset: 0

Views

Author

Joerg Arndt, Aug 14 2013

Keywords

Comments

Convolution square is A092266.

Crossrefs

Cf. A092266 (1+4*x)/AGM(1+4*x,1-4*x).
Cf. A081085 1/AGM(1,1-8*x), A053175 1/AGM(1,1-16*x), A090004 1/AGM(1,1-16*x)^(1/2), A089602 1/AGM(1,1-16*x)^(1/4).

Programs

  • Mathematica
    CoefficientList[Series[Sqrt[2*(1 + 4*x)*EllipticK[1 - (1 + 4*x)^2/(1 - 4*x)^2] / (Pi*(1 - 4*x))], {x, 0, 30}], x] (* Vaclav Kotesovec, Sep 27 2019 *)
  • PARI
    Vec( 1/agm(1,(1-4*x)/(1+4*x)+O(x^66))^(1/2) ) \\ Joerg Arndt, Aug 14 2013

Formula

a(n) ~ 2^(2*n - 1/2) / (n*sqrt(Pi*log(n))) * (1 - (gamma + 3*log(2)) / (2*log(n)) + (3*gamma^2/8 + 9*gamma*log(2)/4 + 27*log(2)^2/8 - 1/16*Pi^2) / log(n)^2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Sep 29 2019
Showing 1-5 of 5 results.