A089602
Expansion of L(x)^(1/4), where L(x) = o.g.f. for A053175.
Original entry on oeis.org
1, 2, 14, 132, 1446, 17340, 220524, 2919240, 39761094, 553080044, 7818246436, 111929301688, 1618972088028, 23616939932376, 346986771074328, 5129262870441360, 76223971339368006, 1137977844577647948, 17058656523389665268, 256642078290095158360, 3873624648355421605492
Offset: 0
-
nmax = 25; CoefficientList[Series[(EllipticK[(8*x/(1 - 8*x))^2]/((1 - 8*x)*Pi/2))^(1/4), {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 26 2019 *)
-
Vec(1/agm(1,1-16*x+O(x^66))^(1/4)) \\ Joerg Arndt, Aug 14 2013
A323385
Expansion of AGM(1,1-16*x) (where AGM denotes the arithmetic-geometric mean).
Original entry on oeis.org
1, -8, -16, -128, -1344, -15872, -199680, -2613248, -35148800, -482500608, -6730072064, -95094702080, -1358152794112, -19573573681152, -284284750397440, -4156674357067776, -61133523873169408, -903754859816157184, -13421680957337894912, -200140704802846801920
Offset: 0
-
R:= Pi*(1-8*x)/(2*EllipticK(-8*x/(1-8*x))):
S:= series(R,x,31):
seq(coeff(S,x,j),j=0..30); # Robert Israel, Jan 13 2019
-
CoefficientList[Series[Pi*(1 - 16*x) / (2*EllipticK[1 - 1/(1 - 16*x)^2]), {x, 0, 25}], x] (* Vaclav Kotesovec, Sep 28 2019 *)
-
N=66; x='x+O('x^N); Vec(agm(1, 1-16*x))
A228156
Expansion of sqrt((1+4*x)/AGM(1+4*x,1-4*x)) where AGM denotes the arithmetic-geometric mean.
Original entry on oeis.org
1, 2, 0, 8, 2, 68, 32, 720, 464, 8480, 6656, 106368, 95912, 1390928, 1392512, 18734144, 20371650, 257955716, 300101760, 3613109008, 4448177412, 51302395528, 66289160512, 736588435360, 992578330048, 10674012880512, 14924667774976, 155890890782720, 225244659392784, 2291995151532576, 3410654921389824
Offset: 0
Cf.
A092266 (1+4*x)/AGM(1+4*x,1-4*x).
-
CoefficientList[Series[Sqrt[2*(1 + 4*x)*EllipticK[1 - (1 + 4*x)^2/(1 - 4*x)^2] / (Pi*(1 - 4*x))], {x, 0, 30}], x] (* Vaclav Kotesovec, Sep 27 2019 *)
-
Vec( 1/agm(1,(1-4*x)/(1+4*x)+O(x^66))^(1/2) ) \\ Joerg Arndt, Aug 14 2013
Showing 1-3 of 3 results.
Comments