cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A081085 Expansion of 1 / AGM(1, 1 - 8*x) in powers of x.

Original entry on oeis.org

1, 4, 20, 112, 676, 4304, 28496, 194240, 1353508, 9593104, 68906320, 500281280, 3664176400, 27033720640, 200683238720, 1497639994112, 11227634469668, 84509490017680, 638344820152784, 4836914483890112, 36753795855173776, 279985580271435584, 2137790149251471680
Offset: 0

Views

Author

Michael Somos, Mar 04 2003

Keywords

Comments

AGM(x, y) is the arithmetic-geometric mean of Gauss and Legendre.
This is the Taylor expansion of a special point on a curve described by Beauville. - Matthijs Coster, Apr 28 2004
This is the exponential (also known as binomial) convolution of sequence A000984 (central binomial) with itself. See the V. Jovovic e.g.f. and a(n) formulas given below. - Wolfdieter Lang, Jan 13 2012
This is one of the Apery-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017
The recursion (n+1)^2 * a(n+1) = (12*n^2+12*n+4) * a(n) - 32*n^2*a(n-1) with n=0 has zero coefficient for a(-1) and thus a(-1) is not determined uniquely by it, but defining a(-1) = 2^(-5/2) makes a(n) = a(-1-n) * 32^(n-1/2) true for all n in Z. - Michael Somos, Apr 05 2022

Examples

			G.f. = A(x) = 1 + 4*x + 20*x^2 + 112*x^3 + 676*x^4 + 4304*x^5 + 28496*x^6 + ...
		

References

  • Matthijs Coster, Over 6 families van krommen [On 6 families of curves], Master's Thesis (unpublished), Aug 26 1983.

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

Programs

  • Maple
    seq(simplify(binomial(2*n, n)*hypergeom([ -n, -n, 1/2], [1, -n+1/2], -1)), n = 0..22); # Peter Bala, Jul 25 2024
  • Mathematica
    Table[Sum[Binomial[n,k]*Binomial[2*n-2*k,n-k]*Binomial[2*k,k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 13 2012 *)
    a[ n_] := SeriesCoefficient[ Hypergeometric2F1[ 1/2, 1/2, 1, 16 x (1 - 4 x)], {x, 0, n}]; (* Michael Somos, Oct 25 2014 *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ 1 / NestWhile[ {(#[[1]] + #[[2]])/2, Sqrt[#[[1]] #[[2]]]} &, {1, Series[ 1 - 8 x, {x, 0, n}]}, #[[1]] =!= #[[2]] &] // First, {x, 0, n}]]; (* Michael Somos, Oct 27 2014 *)
    CoefficientList[Series[2*EllipticK[1/(1 - 1/(4*x))^2] / (Pi*(1 - 4*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Jan 13 2019 *)
    a[n_] := Binomial[2 n, n] HypergeometricPFQ[{1/2, -n, -n},{1, 1/2 - n}, -1];
    Table[a[n], {n, 0, 20}] (* Peter Luschny, Apr 05 2022 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / agm( 1, 1 - 8 * x + x * O(x^n)), n))};
    
  • PARI
    {a(n) = if( n<0,0, 4^n * sum( k=0, n\2, binomial( n, 2*k) * binomial( 2*k, k)^2 / 16^k))};
    
  • PARI
    {a(n)=n!*polcoeff(sum(k=0,n,(2*k)!*x^k/(k!)^3 +x*O(x^n))^2,n)} /* Paul D. Hanna, Sep 04 2009 */
    
  • Python
    from math import comb
    def A081085(n): return sum((1<<(n-(m:=k<<1)<<1))*comb(n,m)*comb(m,k)**2 for k in range((n>>1)+1)) # Chai Wah Wu, Jul 09 2023

Formula

G.f.: 1 / AGM(1, 1 - 8*x).
E.g.f.: exp(4*x)*BesselI(0, 2*x)^2. - Vladeta Jovovic, Aug 20 2003
a(n) = Sum_{k=0..n} binomial(n, k)*binomial(2*n-2*k, n-k)*binomial(2*k, k) = binomial(2*n, n)*hypergeom([ -n, -n, 1/2], [1, -n+1/2], -1). - Vladeta Jovovic, Sep 16 2003
D-finite with recurrence (n+1)^2 * a(n+1) = (12*n^2+12*n+4) * a(n) - 32*n^2*a(n-1). - Matthijs Coster, Apr 28 2004
E.g.f.: [Sum_{n>=0} binomial(2n,n)*x^n/n! ]^2. - Paul D. Hanna, Sep 04 2009
G.f.: Gaussian Hypergeometric function 2F1(1/2, 1/2; 1; 16*x-64*x^2). - Mark van Hoeij, Oct 24 2011
a(n) = 2^(-n) * A053175(n).
a(n) ~ 2^(3*n+1)/(Pi*n). - Vaclav Kotesovec, Oct 13 2012
0 = x*(x+4)*(x+8)*y'' + (3*x^2 + 24*x + 32)*y' + (x+4)*y, where y(x) = A(x/-32). - Gheorghe Coserea, Aug 26 2016
a(n) = Sum_{k=0..floor(n/2)} 4^(n-2*k)*binomial(n, 2*k)*binomial(2*k, k)^2. - Seiichi Manyama, Apr 02 2017
a(n) = (1/Pi)^2*Integral_{0 <= x, y <= Pi} (4*cos(x)^2 + 4*cos(y)^2)^n dx dy. - Peter Bala, Feb 10 2022
a(n) = a(-1-n)*32^(n-1/2) and 0 = +a(n)*(+a(n+1)*(+32768*a(n+2) -23552*a(n+3) +3072*a(n+4)) +a(n+2)*(-8192*a(n+2) +8448*a(n+3) -1248*a(n+4)) +a(n+3)*(-512*a(n+3) +96*a(n+4))) +a(n+1)*(+a(n+1)*(-5120*a(n+2) +3840*a(n+3) -512*a(n+4)) +a(n+2)*(+1536*a(n+2) -1728*a(n+3) +264*a(n+4)) +a(n+3)*(+120*a(n+3) -23*a(n+4))) +a(n+2)*(+a(n+2)*(-32*a(n+2) +48*a(n+3) -8*a(n+4)) +a(n+3)*(-5*a(n+3) +a(n+4))) for all n in Z. - Michael Somos, Apr 04 2022
From Bradley Klee, Jun 05 2023: (Start)
The g.f. T(x) obeys a period-annihilating ODE:
0=4*(-1 + 8*x)*T(x) + (1 - 24*x + 96*x^2)*T'(x) + x*(-1 + 4*x)*(-1 + 8*x)*T''(x).
The periods ODE can be derived from the following Weierstrass data:
g2 = 3*(1 - 16*(1 - 8*x)^2 + 16*(1 - 8*x)^4);
g3 = 1 + 30*(1 - 8*x)^2 - 96*(1 - 8*x)^4 + 64*(1 - 8*x)^6;
which determine an elliptic surface with four singular fibers. (End)
G.f.: Sum_{n>=0} binomial(2*n,n)^2 * x^n * (1 - 4*x)^n. - Paul D. Hanna, Apr 18 2024
From Peter Bala, Jul 25 2024: (Start)
a(n) = 2*Sum_{k = 1..n} (k/n)*binomial(n, k)*binomial(2*n-2*k, n-k)*binomial(2*k, k) for n >= 1.
a(n-1) = (1/2)*Sum_{k = 1..n} (k/n)^2*binomial(n, k)*binomial(2*n-2*k, n-k)* binomial(2*k, k) for n >= 1. Cf. A002895. (End)

A090004 Expansion of L(x)^(1/2), where L(x) is the g.f. for the Catalan Larcombe-French sequence A053175.

Original entry on oeis.org

1, 4, 32, 320, 3616, 44160, 568320, 7587840, 104042496, 1455308800, 20671234048, 297204973568, 4315444576256, 63173752913920, 931171553771520, 13806071300751360, 205737584679321600, 3079516590086553600, 46275305227975393280, 697790255614687969280, 10554814464110079508480
Offset: 0

Views

Author

Peter J Larcombe, Jan 19 2004

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[(EllipticK[(8*x/(1 - 8*x))^2]/((1 - 8*x)*Pi/2))^(1/2), {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 26 2019 *)
  • PARI
    Vec( 1/agm(1,1-16*x+O(x^66))^(1/2) ) \\ Joerg Arndt, Aug 14 2013

Formula

a(n) = 2^n * A089603(n). - Seiichi Manyama, Jan 13 2019
a(n) ~ 2^(4*n - 1/2) / (n * sqrt(Pi*log(n))) * (1 - (gamma/2 + log(2))/log(n) + (3*gamma^2/8 + 3*log(2)*gamma/2 + 3*log(2)^2/2 - Pi^2/16) / log(n)^2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Sep 29 2019

Extensions

More terms from Christian G. Bower, Jan 19 2004

A300100 Expansion of sqrt(agm(1, 1 - 8*x)) in powers of x.

Original entry on oeis.org

1, -2, -4, -16, -82, -476, -2968, -19360, -130220, -895592, -6264656, -44411968, -318300080, -2302042400, -16777460032, -123084642048, -908175062994, -6734680013532, -50164119638328, -375134475461088, -2815268948389212, -21195313970398536
Offset: 0

Views

Author

Seiichi Manyama, Feb 24 2018

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Sqrt[Pi*(1 - 8*x) / (2*EllipticK[1 - 1/(1 - 8*x)^2])], {x, 0, 25}], x] (* Vaclav Kotesovec, Sep 28 2019 *)

Formula

Convolution inverse of A089603.
a(n) ~ -sqrt(Pi) * 2^(3*n - 3/2) / (n * log(n)^(3/2)) * (1 - 3*(gamma/2 + log(2)) / log(n) + (15*gamma^2/8 + 15*log(2)*gamma/2 + 15*log(2)^2/2 - 5*Pi^2/16) / log(n)^2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Sep 29 2019

A327834 Expansion of 1 / AGM(1, 1 - 8*x)^2 in powers of x.

Original entry on oeis.org

1, 8, 56, 384, 2648, 18496, 131008, 940032, 6821848, 49985984, 369258560, 2746629120, 20549693888, 154518118912, 1166873394688, 8844937101312, 67265481552856, 513038965707968, 3923108472072512, 30068733313938432, 230943237733355840, 1777114026405752320
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 27 2019

Keywords

Comments

AGM(x,y) = AGM((x+y)/2,sqrt(x*y)) is the arithmetic-geometric mean.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(2*EllipticK[1/(1 - 1/(4*x))^2]/(Pi*(1 - 4*x)))^2, {x, 0, 25}], x]
    CoefficientList[Series[Hypergeometric2F1[1/2, 1/2, 1, 16*x*(1 - 4*x)]^2, {x, 0, 25}], x]

Formula

Recurrence: n^3*a(n) = 4*(2*n - 1)*(3*n^2 - 3*n + 2)*a(n-1) - 16*(n-1)*(13*n^2 - 26*n + 20)*a(n-2) + 128*(2*n - 3)*(3*n^2 - 9*n + 8)*a(n-3) - 1024*(n-2)^3*a(n-4).
a(n) ~ 2^(3*n + 3) * (log(4*n) + gamma) / (Pi^2 * n), where gamma is the Euler-Mascheroni constant A001620.
Showing 1-4 of 4 results.