cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A053297 Row sums of array T in A053199.

Original entry on oeis.org

1, 5, 22, 92, 372, 1468, 5688, 21728, 82064, 307088, 1140320, 4206912, 15434048, 56350912, 204875648, 742104064, 2679197952, 9644109056, 34623075840, 124001176576, 443136848896, 1580464036864, 5626501838848, 19996918849536, 70960191213568, 251445325991936
Offset: 1

Views

Author

Clark Kimberling, Mar 18 2000

Keywords

Comments

The generating series is a power series composition G(F(t)) where F(t) = t + 3*t^2 + 7*t^3 + 15*t^4 + ... is generating series of A000225, and G(t) = t + 2*t^2 + 3*t^3 + 4*t^4 + ... is generating series of the natural numbers A000027. Proof follows as in reference below. - Oboifeng Dira, Nov 03 2016

Examples

			G.f. = x + 5*x^2 + 22*x^3 + 92*x^4 + 372*x^5 + 1468*x^6 + 5688*x^7 + 21728*x^8 + ...
		

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1-x)*(1-2*x)/(1-4*x+2*x^2)^2)); // G. C. Greubel, May 24 2018
  • Mathematica
    Drop[CoefficientList[Series[x*(1-x)*(1-2*x)/(1-4*x+2*x^2)^2, {x,0,50}], x], 1] (* G. C. Greubel, May 24 2018 *)
  • PARI
    my(x='x+O('x^30)); Vec(x*(1-x)*(1-2*x)/(1-4*x+2*x^2)^2) \\ G. C. Greubel, May 24 2018
    

Formula

G.f.: x * (1 - x) * (1 - 2*x) / (1 - 4*x + 2*x^2)^2. - Michael Somos, Nov 03 2016
a(n) = 8*a(n-1) + 20*a(n-2) - 16*a(n-3) + 4*a(n-4) for all n in Z. - Michael Somos, Nov 03 2016
a(n) = -a(-n) * 2^n for all n in Z. - Michael Somos, Nov 03 2016

A054144 Triangular array T: put T(n,0)=n for all n >= 0 and all other T(n,k)=0; then put T(n,k)=Sum{T(i,j): 0<=j<=i-n+k, n-k<=i<=n}.

Original entry on oeis.org

0, 1, 1, 2, 3, 7, 3, 5, 14, 36, 4, 7, 21, 60, 164, 5, 9, 28, 84, 246, 700, 6, 11, 35, 108, 328, 980, 2868, 7, 13, 42, 132, 410, 1260, 3824, 11424, 8, 15, 49, 156, 492, 1540, 4780, 14688, 44576, 9, 17, 56, 180, 574, 1820, 5736, 17952, 55720, 171216
Offset: 0

Views

Author

Clark Kimberling, Mar 18 2000

Keywords

Comments

The main diagonal is A181292. The triangle below the main diagonal is A053199 which starts with T(n,0) = n + 1 instead of T(n,0) = n here. - Georg Fischer, Nov 16 2021

Examples

			Rows: {0}, {1,1}, {2,3,7}, {3,5,14,36}, ...
		

Crossrefs

A335436 Triangle read by rows: T(n,k) = 2*n+1 for k = 0 and otherwise T(n,k) = Sum_{i=n-k..n, j=0..i-n+k, i<>n or j<>k} T(i,j).

Original entry on oeis.org

1, 3, 4, 5, 8, 21, 7, 12, 35, 96, 9, 16, 49, 144, 410, 11, 20, 63, 192, 574, 1680, 13, 24, 77, 240, 738, 2240, 6692, 15, 28, 91, 288, 902, 2800, 8604, 26112, 17, 32, 105, 336, 1066, 3360, 10516, 32640, 100296, 19, 36, 119, 384, 1230, 3920, 12428, 39168, 122584, 380480
Offset: 0

Views

Author

Oboifeng Dira, Jul 14 2020

Keywords

Examples

			Triangle begins:
  1;
  3,  4;
  5,  8, 21;
  7, 12, 35,  96;
  9, 16, 49, 144, 410;
  ...
T(3,2) = ((2+sqrt(2))^3-(2-sqrt(2))^3)*(6-2+1)/(4*sqrt(2)) = (28*sqrt(2))*(5)/(4*sqrt(2)) = 35.
		

Crossrefs

Programs

  • Maple
    T := proc (n, k) if k = 0 and 0 <= n then 2*n+1 elif 1 <= k and k <= n then round((((2+sqrt(2))^(k+1)-(2-sqrt(2))^(k+1))*(2*n-k+1)/(4*sqrt(2)))) else 0 end if end proc:seq(print(seq(T(n, k), k=0..n)), n=0..9);
  • PARI
    T(n,k) = if (k==0, 2*n+1, if (k<=n, sum(i=n-k, n, sum(j=0, i-n+k, if ((i==n) && (j==k), 0, T(i,j)), 0))));
    matrix(10, 10, n, k, T(n-1, k-1)) \\ Michel Marcus, Sep 08 2020
    
  • PARI
    T(n, k) = if (k==0, 2*n+1, if (k>n, 0, my(w=quadgen(8, 'w)); ((2+w)^(k+1)-(2-w)^(k+1))*(2*n-k+1)/(4*w)));
    matrix(10, 10, n, k, T(n-1, k-1)) \\ Michel Marcus, Sep 10 2020

Formula

T(n,0) = 2*n+1 for k=0;
T(n,k) = ((2+sqrt(2))^(k+1)-(2-sqrt(2))^(k+1))*(2*n-k+1)/(4*sqrt(2)) for 1<=k<=n.
Showing 1-3 of 3 results.