cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053238 First differences between numbers k for which sigma(k) > sigma(k+1).

Original entry on oeis.org

2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Asher Auel, Jan 10 2000

Keywords

Comments

It seems that the expansion consists of only {1,2,3,4}.
The first exception is a(18360922) = 6, corresponding to the gap from 36721680 to 36721686. - Charles R Greathouse IV, Mar 09 2014
The asymptotic mean of this sequence is 2 (Erdős, 1936). - Amiram Eldar, Mar 19 2021

Crossrefs

Programs

  • Haskell
    a053238 n = a053238_list !! (n-1)
    a053238_list = zipWith (-) (tail a053226_list) a053226_list
    -- Reinhard Zumkeller, Oct 16 2011
    
  • Maple
    with(numtheory): f := [seq( `if`((sigma(i) > sigma(i+1)),i,print( )), i=1..5000)];
    seq( f[i+1] - f[i], i=1..2000);
  • Mathematica
    Differences[Select[Range[250],DivisorSigma[1,#]>DivisorSigma [1,#+1]&]]  (* Harvey P. Dale, Apr 22 2011 *)
    Differences[Flatten[Position[Partition[DivisorSigma[1,Range[300]],2,1],?(#[[1]]>#[[2]]&),1,Heads->False]]] (* _Harvey P. Dale, Oct 18 2020 *)
  • PARI
    last=ls=1; for(n=2,200,ns=sigma(n+1); if(ls<=ns,ls=ns; next); ls=ns; print1(n-last", ");last=n) \\ Charles R Greathouse IV, Mar 09 2014

Formula

a(n) = A053226(n+1) - A053226(n).