cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053298 Partial sums of A027964.

Original entry on oeis.org

1, 8, 34, 107, 281, 654, 1397, 2801, 5353, 9859, 17643, 30869, 53062, 89951, 150833, 250780, 414210, 680665, 1114160, 1818310, 2960806, 4813018, 7814074, 12674542, 20544191, 33283434, 53902532, 87272241, 141273663, 228658744
Offset: 0

Views

Author

Barry E. Williams, Mar 04 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196.

Crossrefs

Cf. A027964 and A000204.
A column in triangular array A027960.
Cf. A137176 (row k=5).

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+2*x)/((1-x-x^2)*(1-x)^5))); // G. C. Greubel, May 24 2018
  • Mathematica
    LinearRecurrence[{6,-14,15,-5,-4,4,-1},{1,8,34,107,281,654,1397},30] (* Harvey P. Dale, May 09 2018 *)
    CoefficientList[Series[(1+2x)/((1-x-x^2)(1-x)^5), {x,0,50}], x] (* G. C. Greubel, May 24 2018 *)
  • PARI
    x='x+O('x^30); Vec((1+2*x)/((1-x-x^2)*(1-x)^5)) \\ G. C. Greubel, May 24 2018
    

Formula

a(n) = 3*F(n+10) + F(n+9) - (3*n^4 + 58*n^3 + 489*n^2 + 2234*n + 4752)/24, where F(.) are the Fibonacci numbers (A000045).
a(n) = a(n-1) + a(n-2) + (3*n+4)*C(n+3, 3)/4.
G.f.: (1 + 2*x)/((1 - x - x^2)*(1 - x)^5). - R. J. Mathar, Nov 28 2008