A053300 Continued fraction for Pi/2.
1, 1, 1, 3, 31, 1, 145, 1, 4, 2, 8, 1, 6, 1, 2, 3, 1, 4, 1, 5, 1, 41, 1, 2, 3, 7, 1, 1, 1, 27, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 49, 2, 1, 4, 3, 6, 2, 1, 3, 3, 17, 1, 3, 2, 1, 6, 3, 1, 6, 26, 3, 1, 1, 3, 4, 3, 2, 14, 11, 1, 4, 1, 1, 5, 2, 8, 8, 2, 80, 1, 1, 22, 2, 11, 2, 1
Offset: 0
Examples
1.57079632679489661923132169... = 1 + 1/(1 + 1/(1 + 1/(3 + 1/(31 + ...)))). - _Harry J. Smith_, May 31 2009
Links
- Harry J. Smith, Table of n, a(n) for n = 0..20000
- Michael A. Filaseta, Allen Stenger, D. Callan and Z. Franco, Solution to Problem 10640: When a Multiple of Pi/2 is Close to an Integer, Amer. Math. Monthly, 107 (2000), 177-178.
- I. Rosenholtz, Tangent sequences, world records, ..., Math. Mag., 72 (No. 5, 1999), 367-376.
- G. Xiao, Contfrac
- Index entries for continued fractions for constants
Crossrefs
Cf. A001203.
Cf. A019669 (decimal expansion). - Harry J. Smith, May 31 2009
Programs
-
Magma
R:= RealField(); ContinuedFraction(Pi(R)/2); // G. C. Greubel, May 24 2018
-
Mathematica
ContinuedFraction[ Pi/2, 100 ]
-
PARI
{ allocatemem(932245000); default(realprecision, 21000); x=contfrac(Pi/2); for (n=0, 20000, write("b053300.txt", n, " ", x[n+1])); } \\ Harry J. Smith, May 31 2009