A053307 Number of nonnegative integer 2 X 2 matrices with sum of elements equal to n, under row and column permutations.
1, 1, 4, 5, 11, 14, 24, 30, 45, 55, 76, 91, 119, 140, 176, 204, 249, 285, 340, 385, 451, 506, 584, 650, 741, 819, 924, 1015, 1135, 1240, 1376, 1496, 1649, 1785, 1956, 2109, 2299, 2470, 2680, 2870, 3101, 3311, 3564, 3795, 4071, 4324, 4624, 4900, 5225, 5525
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- B. Babcock and A. van Tuyl, Revisiting the spreading and covering numbers, arXiv preprint arXiv:1109.5847 [math.AC], 2011-2013.
- John Machacek, Unique maximum independent sets in graphs on monomials of a fixed degree, arXiv:2010.11112 [math.CO], 2020.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).
Programs
-
Magma
[(n+2)*(2*n^2 + 8*n + 15 + 9*(-1)^n)/48: n in [0..30]]; // G. C. Greubel, May 31 2018
-
Mathematica
Table[(n+2)*(2*n^2 + 8*n + 15 + 9*(-1)^n)/48,{n,0,20}] (* Vaclav Kotesovec, Mar 16 2014 *)
-
PARI
for(n=0,30, print1((n+2)*(2*n^2 + 8*n + 15 + 9*(-1)^n)/48, ", ")) \\ G. C. Greubel, May 31 2018
Formula
G.f.: (x^2-x+1)/((1-x^2)^2*(1-x)^2).
a(n) = (n+2)*(2*n^2 + 8*n + 15 + 9*(-1)^n)/48. - Vaclav Kotesovec, Mar 16 2014
Comments