cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A053323 First differences of A031928.

Original entry on oeis.org

42, 60, 42, 54, 72, 12, 126, 30, 54, 60, 18, 78, 24, 18, 90, 102, 18, 12, 102, 18, 78, 150, 72, 156, 72, 24, 78, 78, 138, 12, 24, 36, 54, 378, 126, 72, 12, 36, 120, 30, 84, 108, 252, 156, 30, 24, 12, 126, 60, 54, 30, 348, 18, 12, 12, 18, 12, 54, 12, 24, 120, 180, 198, 48
Offset: 1

Views

Author

Labos Elemer, Mar 06 2000

Keywords

Comments

Minimal value is 12; a(n) = 12 for n = 6, 22, 128, 172, 218, 229, 248, 253, 320, 344. - Zak Seidov, Jun 12 2017

Crossrefs

Programs

  • Mathematica
    Differences[Select[Partition[Prime[Range[800]],2,1],#[[2]]-#[[1]]==10&][[All,1]]] (* Harvey P. Dale, Jan 16 2017 *)

A052355 Least prime in A031930 (lesser of 12-twins) whose distance to the next 12-twin is 2*n.

Original entry on oeis.org

199, 7937, 3331, 3049, 1511, 1789, 28607, 7001, 20599, 2069, 18257, 46477, 1201, 15569, 1459, 467, 23087, 23041, 2399, 6101, 7057, 6607, 23801, 3931, 3499, 9029, 5197, 7841, 3191, 1237, 3259, 45767, 4801, 1811, 1709, 40867, 23497, 125441, 5419, 3989, 18077, 21787
Offset: 6

Views

Author

Labos Elemer, Mar 07 2000

Keywords

Comments

The smallest distance between 12-twins [A052380(6)] is 12 and its minimal increment is 2.
a(n) = p specifies a quadruple [p, p+12, p+2n, p+2n+12] with difference pattern of [12, 2n-12, 12].

Examples

			a(7) = 7937 results in [7937, 7949, 7951, 7963] quadruple and [12, 2, 12] difference pattern.
a(10) = 1511 specifies [1511, 1523, 1531, 1543] quadruple and [12, 8, 12] difference pattern without prime in the central gap.
		

Crossrefs

Programs

  • Mathematica
    seq[m_] := Module[{p = Prime[Range[m]], d, i, pp, dd, j}, d = Differences[p]; i = Position[d, 12] // Flatten; pp = p[[i]]; dd = Differences[pp]/2 - 5; j = TakeWhile[FirstPosition[dd, #] & /@ Range[Max[dd]] // Flatten, ! MissingQ[#] &]; pp[[j]]]; seq[1q000] (* Amiram Eldar, Mar 05 2025 *)
  • PARI
    list(len) = {my(s = vector(len), c = 0, p1 = 2, q1 = 0, q2, d); forprime(p2 = 3, , if(p2 == p1 + 12, q2 = p1; if(q1 > 0, d = (q2 - q1)/2 - 5; if(d <= len && s[d] == 0, c++; s[d] = q1; if(c == len, return(s)))); q1 = q2); p1 = p2);} \\ Amiram Eldar, Mar 05 2025

Extensions

Name and offset corrected by Amiram Eldar, Mar 05 2025

A053325 First differences of A031932.

Original entry on oeis.org

180, 24, 456, 66, 24, 90, 456, 174, 264, 192, 318, 66, 210, 120, 66, 120, 84, 570, 84, 102, 54, 30, 276, 354, 324, 72, 84, 180, 156, 24, 336, 270, 114, 666, 324, 150, 90, 324, 96, 24, 126, 186, 108, 126, 24, 150, 162, 528, 186, 54, 120, 90, 300, 456, 120, 150
Offset: 1

Views

Author

Labos Elemer, Mar 06 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Differences[Transpose[Select[Partition[Prime[Range[1500]],2,1], Last[#]- First[#] == 14&]][[1]]] (* Harvey P. Dale, Aug 24 2012 *)

A053321 First differences of A031924.

Original entry on oeis.org

8, 16, 6, 8, 12, 10, 48, 20, 6, 10, 6, 60, 18, 6, 6, 8, 60, 22, 14, 6, 10, 50, 10, 60, 38, 16, 6, 8, 16, 6, 8, 6, 40, 6, 24, 50, 6, 18, 190, 6, 24, 6, 14, 22, 20, 30, 34, 6, 14, 6, 58, 6, 30, 6, 8, 52, 8, 30, 40, 6, 66, 20, 40, 50, 10, 48, 12, 8, 36, 84, 6, 6, 24, 84, 40, 6, 66, 14, 24
Offset: 1

Views

Author

Labos Elemer, Mar 06 2000

Keywords

Crossrefs

Programs

  • GAP
    P:=Filtered([1..2100],IsPrime);;
    P1:=List(Filtered([1..Length(P)-1],i->P[i+1]-P[i]=6),k->P[k]);;
    a:=List([1..Length(P1)-1],i->P1[i+1]-P1[i]);; Print(a); # Muniru A Asiru, Dec 23 2018
  • Mathematica
    With[{p = Prime[Range[330]]}, Differences[p[[Position[Differences[p], 6] // Flatten]]]] (* Amiram Eldar, Mar 10 2025 *)

A053322 First differences of A031926.

Original entry on oeis.org

270, 30, 12, 48, 30, 12, 192, 18, 18, 24, 18, 150, 18, 54, 126, 54, 30, 180, 66, 84, 36, 12, 162, 90, 156, 24, 150, 60, 30, 30, 186, 72, 78, 54, 36, 42, 102, 36, 30, 102, 30, 168, 12, 228, 42, 132, 78, 18, 162, 408, 60, 234, 168, 192, 108, 120, 18, 210, 174, 120, 90
Offset: 1

Views

Author

Labos Elemer, Mar 06 2000

Keywords

Comments

Minimal value 12 is for n = 3, 6, 22, 43, 90, 123, 125, 135, 144, 147, 201, 255, 276, 287, 310, 338, 350. - Zak Seidov, Jun 12 2017

Crossrefs

Programs

  • Mathematica
    With[{p = Prime[Range[1000]]}, Differences[p[[Position[Differences[p], 8] // Flatten]]]] (* Amiram Eldar, Mar 10 2025 *)

A053326 First differences of A031934.

Original entry on oeis.org

102, 180, 108, 30, 342, 210, 318, 252, 18, 42, 210, 414, 54, 456, 54, 402, 258, 342, 258, 756, 126, 78, 42, 450, 84, 576, 588, 66, 366, 228, 420, 246, 366, 240, 354, 90, 240, 156, 150, 198, 510, 246, 96, 828, 156, 60, 36, 870, 180, 114, 54, 660, 600, 522, 330
Offset: 1

Views

Author

Labos Elemer, Mar 06 2000

Keywords

Crossrefs

Programs

  • Mathematica
    With[{p = Prime[Range[2000]]}, Differences[p[[Position[Differences[p], 16] // Flatten]]]] (* Amiram Eldar, Mar 10 2025 *)

A053327 First differences of A031936.

Original entry on oeis.org

546, 190, 122, 378, 154, 248, 342, 358, 942, 86, 270, 214, 50, 40, 140, 100, 30, 326, 150, 274, 528, 218, 222, 78, 52, 38, 540, 192, 42, 40, 26, 162, 262, 308, 570, 348, 184, 456, 200, 244, 498, 62, 378, 1488, 52, 50, 42, 160, 60, 780, 78, 42, 128, 22, 270, 66
Offset: 1

Views

Author

Labos Elemer, Mar 06 2000

Keywords

Crossrefs

Programs

  • Mathematica
    With[{p = Prime[Range[2000]]}, Differences[p[[Position[Differences[p], 18] // Flatten]]]] (* Amiram Eldar, Mar 10 2025 *)
Showing 1-7 of 7 results.