A053344 Minimal number of coins needed to pay n cents using coins of denominations 1, 5, 10, 25 cents.
1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 3, 4, 5, 6, 7, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 3, 4, 5, 6, 7, 3, 4, 5, 6, 7, 4, 5, 6, 7, 8, 4, 5, 6, 7, 8, 3, 4, 5, 6, 7, 4, 5, 6, 7, 8, 4, 5, 6, 7, 8, 5, 6, 7, 8, 9, 5, 6, 7, 8, 9, 4
Offset: 1
Examples
a(57) = 5 because to pay 57 cents at least 5 coins are needed: 2 of 25 cents, 1 of 5 cents and 2 of 1 cent.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for sequences related to making change.
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1).
Programs
-
Magma
I:=[1,2,3,4,1,2,3,4,5,1,2,3,4,5,2,3,4,5,6,2,3,4,5,6,1,2]; [n le 26 select I[n] else Self(n-1) +Self(n-25) - Self(n-26): n in [1..70]]; // G. C. Greubel, May 31 2018
-
Mathematica
f[n_]:=Floor[n/25]+Floor[Mod[n,25]/10]+Floor[Mod[Mod[n,25],10]/5]+Mod[Mod[Mod[n,25],10],5]; lst={};Do[AppendTo[lst,f[n]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 28 2009 *) Table[Min[Total/@FrobeniusSolve[{1,5,10,25},n]],{n,100}] (* or *) LinearRecurrence[{1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1},{1,2,3,4,1,2,3,4,5,1,2,3,4,5,2,3,4,5,6,2,3,4,5,6,1,2},100] (* Harvey P. Dale, Aug 14 2014 *)
-
PARI
Vec(-x*(5*x^24 -x^23 -x^22 -x^21 -x^20 +4*x^19 -x^18 -x^17 -x^16 -x^15 +3*x^14 -x^13 -x^12 -x^11 -x^10 +4*x^9 -x^8 -x^7 -x^6 -x^5 +3*x^4 -x^3 -x^2 -x -1) / ((x -1)^2*(x^4 +x^3 +x^2 +x +1)*(x^20 +x^15 +x^10 +x^5 +1)) + O(x^100)) \\ Colin Barker, Jan 10 2015
-
Python
def A053344(n): a, b = divmod(n,25) c, d = divmod(b,10) return a+c+sum(divmod(d,5)) # Chai Wah Wu, Nov 08 2022
Formula
a(n) = floor(n/25) + floor([n mod 25]/10) + floor([{n mod 25} mod 10]/5) + ([n mod 25] mod 10) mod 5.
G.f.: -x*(5*x^24 -x^23 -x^22 -x^21 -x^20 +4*x^19 -x^18 -x^17 -x^16 -x^15 +3*x^14 -x^13 -x^12 -x^11 -x^10 +4*x^9 -x^8 -x^7 -x^6 -x^5 +3*x^4 -x^3 -x^2 -x -1) / ((x -1)^2*(x^4 +x^3 +x^2 +x +1)*(x^20 +x^15 +x^10 +x^5 +1)). - Colin Barker, Jan 10 2015