cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053344 Minimal number of coins needed to pay n cents using coins of denominations 1, 5, 10, 25 cents.

Original entry on oeis.org

1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 3, 4, 5, 6, 7, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 3, 4, 5, 6, 7, 3, 4, 5, 6, 7, 4, 5, 6, 7, 8, 4, 5, 6, 7, 8, 3, 4, 5, 6, 7, 4, 5, 6, 7, 8, 4, 5, 6, 7, 8, 5, 6, 7, 8, 9, 5, 6, 7, 8, 9, 4
Offset: 1

Views

Author

Jean Fontaine (jfontain(AT)odyssee.net), Jan 06 2000

Keywords

Examples

			a(57) = 5 because to pay 57 cents at least 5 coins are needed: 2 of 25 cents, 1 of 5 cents and 2 of 1 cent.
		

Crossrefs

Programs

  • Magma
    I:=[1,2,3,4,1,2,3,4,5,1,2,3,4,5,2,3,4,5,6,2,3,4,5,6,1,2]; [n le 26 select I[n] else Self(n-1) +Self(n-25) - Self(n-26): n in [1..70]]; // G. C. Greubel, May 31 2018
    
  • Mathematica
    f[n_]:=Floor[n/25]+Floor[Mod[n,25]/10]+Floor[Mod[Mod[n,25],10]/5]+Mod[Mod[Mod[n,25],10],5]; lst={};Do[AppendTo[lst,f[n]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 28 2009 *)
    Table[Min[Total/@FrobeniusSolve[{1,5,10,25},n]],{n,100}] (* or *) LinearRecurrence[{1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1},{1,2,3,4,1,2,3,4,5,1,2,3,4,5,2,3,4,5,6,2,3,4,5,6,1,2},100] (* Harvey P. Dale, Aug 14 2014 *)
  • PARI
    Vec(-x*(5*x^24 -x^23 -x^22 -x^21 -x^20 +4*x^19 -x^18 -x^17 -x^16 -x^15 +3*x^14 -x^13 -x^12 -x^11 -x^10 +4*x^9 -x^8 -x^7 -x^6 -x^5 +3*x^4 -x^3 -x^2 -x -1) / ((x -1)^2*(x^4 +x^3 +x^2 +x +1)*(x^20 +x^15 +x^10 +x^5 +1)) + O(x^100)) \\ Colin Barker, Jan 10 2015
    
  • Python
    def A053344(n):
        a, b = divmod(n,25)
        c, d = divmod(b,10)
        return a+c+sum(divmod(d,5)) # Chai Wah Wu, Nov 08 2022

Formula

a(n) = floor(n/25) + floor([n mod 25]/10) + floor([{n mod 25} mod 10]/5) + ([n mod 25] mod 10) mod 5.
G.f.: -x*(5*x^24 -x^23 -x^22 -x^21 -x^20 +4*x^19 -x^18 -x^17 -x^16 -x^15 +3*x^14 -x^13 -x^12 -x^11 -x^10 +4*x^9 -x^8 -x^7 -x^6 -x^5 +3*x^4 -x^3 -x^2 -x -1) / ((x -1)^2*(x^4 +x^3 +x^2 +x +1)*(x^20 +x^15 +x^10 +x^5 +1)). - Colin Barker, Jan 10 2015