cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053409 Fibonacci numbers which are semiprimes.

Original entry on oeis.org

21, 34, 55, 377, 4181, 17711, 121393, 1346269, 5702887, 165580141, 53316291173, 956722026041, 2504730781961, 308061521170129, 806515533049393, 14472334024676221, 1779979416004714189, 19740274219868223167, 573147844013817084101, 10284720757613717413913
Offset: 1

Views

Author

G. L. Honaker, Jr., Jan 09 2000

Keywords

Comments

Subsequence of A006881, since the only square Fibonacci numbers are 1 and 144. - Charles R Greathouse IV, Sep 24 2012
Apart from a(1) = 21, all terms are of the form F(p), F(2p), or F(p^2) where F(n) is the n-th Fibonacci number. - Charles R Greathouse IV, Oct 06 2016

Crossrefs

Column k=2 of A303216.

Programs

  • Mathematica
    Select[Fibonacci@Range[120],Last/@FactorInteger[#]=={1,1}&] (* Vladimir Joseph Stephan Orlovsky, Jan 29 2012 *)
    Select[Fibonacci[Range[150]],PrimeOmega[#]==2&] (* Harvey P. Dale, Jun 26 2020 *)
  • PARI
    issemi(n)=bigomega(n)==2
    list(lim)=my(v=List([21]),F,t); forprime(p=2,, F=fibonacci(p); if(F>lim, break); if(issemi(F), listput(v,F))); forprime(p=2,, F=fibonacci(p^2); if(F>lim, break); if(isprime(t=fibonacci(p)) && isprime(F/t), listput(v,F))); forprime(p=2,, F=fibonacci(2*p); if(F>lim, break); if(isprime(t=fibonacci(p)) && isprime(F/t), listput(v,F))); Set(v) \\ Charles R Greathouse IV, Oct 06 2016

Formula

a(n) = A000045(A072381(n)).