cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A064911 If n is semiprime (or 2-almost prime) then 1 else 0.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Patrick De Geest, Oct 13 2001

Keywords

Crossrefs

Programs

  • Haskell
    a064911 = a010051 . a032742 -- Reinhard Zumkeller, Mar 13 2011
    
  • Maple
    with(numtheory):
    a:= n-> `if`(bigomega(n)=2, 1, 0):
    seq(a(n), n=1..120);  # Alois P. Heinz, Mar 16 2011
  • Mathematica
    Table[If[PrimeOmega[n] == 2, 1, 0], {n, 105}] (* Jayanta Basu, May 25 2013 *)
  • PARI
    a(n)=bigomega(n)==2 \\ Charles R Greathouse IV, Mar 13 2011

Formula

a(n) = 1 iff n is in A001358 (semiprimes), a(n) = 0 iff n is in A100959 (non-semiprimes). - Reinhard Zumkeller, Nov 24 2004
Dirichlet g.f.: (primezeta(2s) + primezeta(s)^2)/2. - Franklin T. Adams-Watters, Jun 09 2006
a(n) = A057427(A174956(n)); a(n)*A072000(n) = A174956(n). - Reinhard Zumkeller, Apr 03 2010
a(n) = A010051(A032742(n)) (i.e., largest proper divisor is prime). - Reinhard Zumkeller, Mar 13 2011
From Antti Karttunen, Apr 24 2018 & Apr 22 2022: (Start)
a(n) = A280710(n) + A302048(n) = A101040(n) - A010051(n).
a(n) = A353478(n) + A353480(n) = A353477(n) + A353478(n) + A353479(n).
a(n) = A353475(n) + A353476(n).
(End)
a(n) = [Omega(n) = 2], where [ ] is the Iverson bracket. - Wesley Ivan Hurt, Jul 22 2025

Extensions

Edited by M. F. Hasler, Oct 18 2017

A072381 Numbers m such that Fibonacci(m) is a semiprime.

Original entry on oeis.org

8, 9, 10, 14, 19, 22, 26, 31, 34, 41, 53, 59, 61, 71, 73, 79, 89, 94, 101, 107, 109, 113, 121, 127, 151, 167, 173, 191, 193, 199, 227, 251, 271, 277, 293, 331, 353, 397, 401, 467, 587, 599, 601, 613, 631, 653, 743, 991, 1091, 1223, 1373, 1487
Offset: 1

Views

Author

Shyam Sunder Gupta, Jul 20 2002

Keywords

Comments

Note that there are two cases: (1) n is 2p, in which case the semiprime is Fibonacci(p)*Lucas(p) for some prime p, or (2) n is a power of a prime p^k for k > 0. In the first case, the primes p are in sequence A080327. In the second case, it appears that k=1 except for n = 8, 9 and 121. - T. D. Noe, Sep 23 2005
The associated sequence of Fibonacci numbers contains no squares, since the only Fibonacci numbers which are square are 1 and 144. Consequently this is a subsequence of A114842. - Charles R Greathouse IV, Sep 24 2012
Sequence continues as 1543?, 1709, 1741?, 1759, 1801?, 1889, 1987, ..., where ? marks uncertain terms. - Max Alekseyev, Jul 10 2016

Examples

			a(4) = 14 because the 14th Fibonacci number 377 = 13*29 is a semiprime.
		

Crossrefs

Cf. A053409, A085726 (n such that n-th Lucas number is a semiprime).
Column k=2 of A303215.

Programs

  • Mathematica
    Select[Range[200], Plus@@Last/@FactorInteger[Fibonacci[ # ]] == 2&] (Noe)
    Select[Range[1500],PrimeOmega[Fibonacci[#]]==2&] (* Harvey P. Dale, Dec 13 2020 *)
  • PARI
    for(n=2,9999,bigomega(fibonacci(n))==2&&print1(n",")) \\ - M. F. Hasler, Oct 31 2012
    
  • PARI
    issemi(n)=bigomega(n)==2
    is(n)=if(n%2, my(p); if(issquare(n,&p), isprime(p) && isprime(fibonacci(p)) && isprime(fibonacci(n)/fibonacci(p)), isprime(n) && issemi(fibonacci(n))), (isprime(n/2) && isprime(fibonacci(n/2)) && isprime(fibonacci(n)/fibonacci(n/2))) || n==8) \\ Charles R Greathouse IV, Oct 06 2016

Extensions

More terms from Don Reble, Jul 31 2002
a(49)-a(50) from Max Alekseyev, Aug 18 2013
a(51)-a(52) from Max Alekseyev, Jul 10 2016

A303216 A(n,k) is the n-th Fibonacci number with exactly k prime factors (counted with multiplicity); square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

2, 21, 3, 8, 34, 5, 6765, 610, 55, 13, 2584, 196418, 987, 377, 89, 144, 701408733, 317811, 10946, 4181, 233, 832040, 102334155, 1134903170, 2178309, 75025, 17711, 1597, 86267571272, 267914296, 12586269025, 365435296162, 32951280099, 3524578, 121393, 28657
Offset: 1

Views

Author

Alois P. Heinz, Apr 19 2018

Keywords

Examples

			Square array A(n,k) begins:
    2,    21,       8,         6765,           2584,                 144, ...
    3,    34,     610,       196418,      701408733,           102334155, ...
    5,    55,     987,       317811,     1134903170,         12586269025, ...
   13,   377,   10946,      2178309,   365435296162,      10610209857723, ...
   89,  4181,   75025,  32951280099,  6557470319842,    2111485077978050, ...
  233, 17711, 3524578, 139583862445, 72723460248141, 7540113804746346429, ...
		

Crossrefs

Columns k=1-2 give: A005478, A053409.
Row n=1 gives A072397.

Programs

  • Maple
    F:= combinat[fibonacci]: with(numtheory):
    A:= proc() local h, p, q; p, q:= proc() [] end, 2;
          proc(n, k)
            while nops(p(k))
    				
  • Mathematica
    A[n_, k_] := Module[{F = Fibonacci, h, p, q = 2}, p[_] = {}; While[ Length[p[k]] < n, q = q+1; h = PrimeOmega[F[q]]; p[h] = Append[p[h], F[q]]]; p[k][[n]]];
    Table[Table[A[n, 1+d-n], {n, 1, d}], {d, 1, 10}] // Flatten (* Jean-François Alcover, Feb 05 2021, after Alois P. Heinz *)

Formula

A(n,k) = A000045(A303215(n,k)).
A001222(A(n,k)) = k.

A064910 Smallest semiprime p*q such that q >= p and q mod p = n.

Original entry on oeis.org

4, 6, 15, 65, 77, 133, 91, 319, 209, 341, 299, 481, 493, 799, 527, 1007, 1139, 2449, 703, 3611, 989, 1541, 1643, 3589, 1537, 2407, 2747, 2759, 1829, 3811, 1891, 4633, 2993, 3959, 2627, 4033, 2701, 6157, 3239, 9073, 3569, 5461, 4183, 6439, 5141, 6533
Offset: 0

Views

Author

Patrick De Geest, Oct 13 2001

Keywords

Crossrefs

Cf. A001358 (p2 mod p1 = 0), A064899-A064909, A064911, A053409, A046413.

Programs

  • Mathematica
    nsp[n_Integer] := nsp[n] = Block[{sp = n + 1}, While[PrimeOmega[sp] != 2, sp++]; sp]; a[n_Integer] := Block[{sp = 4}, While[ fi = FactorInteger@ sp; Mod[fi[[-1, 1]], fi[[1, 1]]] != n, sp = nsp[sp]]; sp]; Array[a, 46, 0] (* Robert G. Wilson v, Aug 20 2025 *)

Extensions

Name amended by John Cerkan, Apr 12 2018

A122498 Padovan numbers that are semiprimes.

Original entry on oeis.org

4, 9, 21, 49, 65, 86, 265, 1081, 1897, 2513, 7739, 97229, 128801, 299426, 922111, 1221537, 2839729, 62608681, 338356945, 53406819691, 2066337330754, 6363483400447, 8429820731201, 432062194544201, 7190854504969591, 12619069972000553, 16716708595637087
Offset: 1

Views

Author

Roger L. Bagula, Sep 15 2006

Keywords

Comments

The smallest candidate for the next term in the b-file is A000931(1958), which is composite with 239 digits and an unknown number of prime factors. - Hugo Pfoertner, Sep 07 2017

Crossrefs

Programs

  • Maple
    select(x-> numtheory[bigomega](x)=2, [(<<0|1|0>,
       <0|0|1>, <1|1|0>>^i)[1$2]$i=0..300])[];  # Alois P. Heinz, Aug 31 2017
  • Mathematica
    SemiprimeQ[1] := False SemiprimeQ[n_Integer] := Plus @@ (Last /@ FactorInteger[n]) == 2 a = Table[ SeriesCoefficient[ Series[x/(1 - x^2 - x^3), {x, 0, 50}], n], {n, 0, 50}] f[n_] = If[SemiprimeQ[a[[n]]] == True, a[[n]], {}] Flatten[Table[f[n], {n, 1, Length[a]}]]

Extensions

More terms from Alois P. Heinz, Aug 31 2017

A137563 Fibonacci numbers with three distinct prime divisors.

Original entry on oeis.org

610, 987, 2584, 10946, 3524578, 9227465, 24157817, 39088169, 63245986, 1836311903, 7778742049, 20365011074, 591286729879, 4052739537881, 17167680177565, 44945570212853, 61305790721611591, 420196140727489673, 1500520536206896083277, 6356306993006846248183
Offset: 1

Views

Author

Parthasarathy Nambi, Apr 25 2008

Keywords

Examples

			The distinct prime divisors of the Fibonacci number 610 are 2, 5 and 61.
The distinct prime divisors of the Fibonacci number 44945570212853 are 269, 116849 and 1429913.
		

Crossrefs

Intersection of A033992 and A000045. - Michel Marcus, Mar 24 2018
Column k=3 of A303218.

Programs

  • GAP
    P1:=List([1..110],n->Fibonacci(n));;
    P2:=List([1..Length(P1)],i->Filtered(DivisorsInt(P1[i]),IsPrime));;
    a:=List(Filtered([1..Length(P2)],i->Length(P2[i])=3),j->P1[j]); # Muniru A Asiru, Mar 25 2018
  • Maple
    with(numtheory): with(combinat): a:=proc(n) if nops(factorset(fibonacci(n)))= 3 then fibonacci(n) else end if end proc: seq(a(n),n=1..110); # Emeric Deutsch, May 18 2008
  • Mathematica
    Select[Array[Fibonacci, 120], PrimeNu@ # == 3 &] (* Michael De Vlieger, Apr 10 2018 *)
  • PARI
    lista(nn) = for (n=1, nn, if (omega(f=fibonacci(n))==3, print1(f, ", "))); \\ Michel Marcus, Mar 24 2018
    

Formula

a(n) = A000045(A114841(n)). - Michel Marcus, Mar 24 2018

Extensions

More terms from Emeric Deutsch, May 18 2008

A075735 Squarefree Fibonacci numbers with an even number of prime factors (mu(n)=1).

Original entry on oeis.org

1, 1, 21, 34, 55, 377, 4181, 6765, 17711, 121393, 196418, 317811, 1346269, 2178309, 5702887, 102334155, 165580141, 32951280099, 53316291173, 139583862445, 956722026041, 2504730781961, 10610209857723, 308061521170129
Offset: 1

Views

Author

Jani Melik, Oct 07 2002

Keywords

Examples

			21 is a Fibonacci number and 21=3*7, 34 is a Fibonacci numbers and 34=2*17, ...
		

Crossrefs

Subsequence of A061305 (squarefree Fibonacci numbers).

Programs

  • Maple
    with(combinat, fibonacci): m1_fib := proc(n); if (numtheory[mobius](fibonacci(n))=1) then RETURN(fibonacci(n)); fi; end: seq(m1_fib(i), i=1..100);

A099954 Numbers k such that Fibonacci(k) and its reversal are two distinct semiprimes.

Original entry on oeis.org

19, 22, 31, 41, 59, 107, 193, 199, 227, 467
Offset: 1

Views

Author

Keywords

Comments

a(11) > 1000. - Donovan Johnson, Jun 06 2009
a(11) >= 1801. Inclusion of 1801 depends on the factorization of Fibonacci(1801), a 377-digit composite number. - Tyler Busby, Jan 14 2023

Examples

			F(19) = 4181 = 37 * 113, reverse(F(19)) = 1814 = 2 * 907.
		

Crossrefs

F(a(n)) is the intersection of A053409 and A097393

Programs

  • Maple
    with(combinat): with(numtheory): rev:=proc(n) local nn: nn:=convert(n,base,10): add(nn[nops(nn)+1-j]*10^(j-1),j=1..nops(nn)) end: a:=proc(n): if rev(fibonacci(n))<>fibonacci(n) and bigomega(fibonacci(n))=2 and bigomega(rev(fibonacci(n)))=2 then n else fi end: seq(a(n),n=1..200); # Emeric Deutsch, Jul 26 2006
  • Mathematica
    fspQ[n_]:=Module[{f=Fibonacci[n]},f!=IntegerReverse[f]&&PrimeOmega[f] == PrimeOmega[IntegerReverse[f]]==2]; Select[Range[470],fspQ] (* Harvey P. Dale, Jul 24 2016 *)
  • PARI
    is(k) = {(fib=fibonacci(k))!=(fibrev=fromdigits(Vecrev(digits(fib)))) && (bigomega(fib)==2 && bigomega(fibrev)==2)} \\ Tyler Busby, Jan 07 2023

Extensions

More terms from Emeric Deutsch, Jul 26 2006
a(10) from Donovan Johnson, Jun 06 2009

A136341 Fibonacci primes or semiprimes F(k) such that F(k+1) is again prime or semiprime.

Original entry on oeis.org

2, 3, 13, 21, 34, 55, 233, 17711
Offset: 1

Views

Author

Cino Hilliard, Mar 28 2008

Keywords

Comments

By definition, the smaller number in a pair of two consecutive Fibonacci numbers in A061305. a(9), if it exists, is >= A000045(230), so it has at least 48 digits. [R. J. Mathar, Feb 06 2010]
A search for consecutive numbers in the union of A072381 and A001605 shows that a(9) must be larger than A000045(990), a number with 207 digits, if it exists. [R. J. Mathar, Jun 02 2010]

Examples

			(55,89) is an almost twin Fibonacci prime pair because 55=5*11 is a 2-almost prime and 89 is prime.
		

Crossrefs

Cf. A001358.
Cf. A053409, A005478. [R. J. Mathar, Jun 02 2010]

Programs

  • Mathematica
    Fibonacci[#]&/@(SequencePosition[Table[If[PrimeOmega[f]<=2,1,0],{f,Fibonacci[ Range[150]]}],{1,1}][[All,1]]) (* Harvey P. Dale, Mar 29 2022 *)
  • PARI
    ATfib(n) = for(x=3,n,f1=fibonacci(x);f2=fibonacci(x+1);if(bigomega (f1)<=2&&bigomega(f2)<=2, print1(f1",")))
    
  • PARI
    for( k=3,10^5, bigomega( fibonacci( k++ ))>2 & next; bigomega( fibonacci( k-1 ))>2 & next; print1(fibonacci(k--)",")) \\ M. F. Hasler, May 01 2008

Formula

Let F(n) = n-th Fibonacci number and define a 2-almost prime number to be a number with only 2 prime divisors with multiplicity.

Extensions

Edited by M. F. Hasler, May 01 2008

A173684 Semiprimes of the form Fibonacci(k) + k.

Original entry on oeis.org

10, 14, 65, 391, 1003, 2602, 10967, 2178341, 701408777, 86267571326, 591286729937, 4052739537943, 72723460248209, 117669030461063, 3416454622906783, 61305790721611673, 420196140727489759, 2427893228399975082557, 251728825683549488150424389
Offset: 1

Views

Author

Jonathan Vos Post, Jan 26 2011

Keywords

Comments

This is to A069108 as semiprimes are to primes. A002062(k) is semiprime for k = 5, 6, 10, 14, 16, 18, 21, 32, ...

Examples

			F(21) + 21 = 10967 = 11 * 997, thus 10967 is in the sequence.
		

Crossrefs

Programs

  • Magma
    IsSemiprime:=func< n | &+[ k[2]: k in Factorization(n) ] eq 2 >; [ a: n in [1..100] | IsSemiprime(a) where a is n+Fibonacci(n) ]; // Klaus Brockhaus, Jan 27 2011
  • Mathematica
    Select[Table[Fibonacci[n]+n,{n,200}],PrimeOmega[#]==2&] (* Harvey P. Dale, Nov 02 2011 *)

Formula

A002062 INTERSECTION A001358.
Showing 1-10 of 13 results. Next