cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A303218 A(n,k) is the n-th Fibonacci number with exactly k distinct prime factors; square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

2, 21, 3, 610, 34, 5, 6765, 987, 55, 8, 832040, 46368, 2584, 144, 13, 102334155, 14930352, 196418, 10946, 377, 89, 190392490709135, 4807526976, 267914296, 317811, 3524578, 4181, 233, 1548008755920, 37889062373143906, 86267571272, 701408733, 2178309, 9227465, 17711, 1597
Offset: 1

Views

Author

Alois P. Heinz, Apr 19 2018

Keywords

Examples

			Square array A(n,k) begins:
   2,   21,     610,        6765,      832040,        102334155, ...
   3,   34,     987,       46368,    14930352,       4807526976, ...
   5,   55,    2584,      196418,   267914296,      86267571272, ...
   8,  144,   10946,      317811,   701408733,     225851433717, ...
  13,  377, 3524578,     2178309,  1134903170,   10610209857723, ...
  89, 4181, 9227465, 32951280099, 12586269025, 8944394323791464, ...
		

Crossrefs

Column k=3 gives A137563.
Row n=1 gives: A060319.

Programs

  • Maple
    F:= combinat[fibonacci]: with(numtheory):
    A:= proc() local h, p, q; p, q:= proc() [] end, 2;
          proc(n, k)
            while nops(p(k))
    				
  • Mathematica
    nmax = 12(*rows*);
    maxIndex = 200; (* increase if message "part does not exist" *)
    nu[n_] := nu[n] = PrimeNu[Fibonacci[n]];
    col[k_] := Select[Range[maxIndex], nu[#] == k &];
    T = Array[col, nmax];
    A[n_, k_] := Fibonacci[T[[k, n]]];
    Table[A[n-k+1, k], {n, 1, nmax}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Feb 05 2021 *)

Formula

A(n,k) = A000045(A303217(n,k)).
A001221(A(n,k)) = k.

A206096 Fibonacci numbers with 4 distinct prime divisors, each of multiplicity 1.

Original entry on oeis.org

6765, 196418, 317811, 2178309, 32951280099, 139583862445, 1304969544928657, 5527939700884757, 259695496911122585, 679891637638612258, 12200160415121876738, 83621143489848422977, 483162952612010163284885, 22698374052006863956975682
Offset: 1

Views

Author

Keywords

Comments

Intersection of A000045 and A046386. - Michel Marcus, Sep 11 2014

Crossrefs

Programs

  • Maple
    filter:= proc(t)
    local F;
    F:= ifactors(t)[2];
    map(f -> f[2],F) = [1,1,1,1];
    end proc:
    select(filter, [seq(combinat:-fibonacci(n),n=1..200)]); # Robert Israel, Sep 07 2014
  • Mathematica
    Select[Fibonacci[Range[200]],Last/@FactorInteger[#]=={1,1,1,1}&]
  • PARI
    Vec(select(k -> omega(k)==4 && bigomega(k)==4, vector(100, i, fibonacci(i)))) \\ Edward Jiang, Sep 11 2014

A301561 Sphenic Fibonacci numbers.

Original entry on oeis.org

610, 987, 10946, 3524578, 9227465, 24157817, 39088169, 63245986, 1836311903, 7778742049, 20365011074, 591286729879, 4052739537881, 17167680177565, 44945570212853, 61305790721611591, 420196140727489673, 1500520536206896083277, 6356306993006846248183
Offset: 1

Views

Author

Waldemar Puszkarz, Mar 23 2018

Keywords

Comments

Intersection of A000045 and A007304. There are 28 sphenic numbers among the first 200 positive Fibonacci numbers.

Examples

			610 is a term since it is a Fibonacci number that is a product of 3 distinct primes, 610=2*5*61, which makes it a sphenic number.
		

Crossrefs

Cf. A000045, A007304, A061305 (squarefree Fibonaccis), A137563 (Fibonaccis with 3 distinct primes).

Programs

  • Mathematica
    Select[Fibonacci@Range[120], SquareFreeQ[#]&&PrimeNu[#]==3&]
  • PARI
    for(n=1, 120, fn=fibonacci(n); issquarefree(fn)&&omega(fn)==3&&print1(fn ","))

Formula

A000045 INTERSECT A007304.
Showing 1-3 of 3 results.