cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053439 Expansion of (1+x+2*x^3)/((1-x)*(1-x^2)^2).

Original entry on oeis.org

1, 2, 4, 8, 11, 18, 22, 32, 37, 50, 56, 72, 79, 98, 106, 128, 137, 162, 172, 200, 211, 242, 254, 288, 301, 338, 352, 392, 407, 450, 466, 512, 529, 578, 596, 648, 667, 722, 742, 800, 821, 882, 904, 968, 991, 1058, 1082, 1152, 1177, 1250, 1276
Offset: 0

Views

Author

N. J. A. Sloane, Jan 12 2000

Keywords

Comments

a(n) gives the number of vertices encountered along the shortest walk that encounters every edge at least once on the complete graph with n + 1 vertices. - Peter Kagey, Nov 17 2016

Examples

			G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 11*x^4 + 18*x^5 + 22*x^6 + 32*x^7 + 37*x^8 + ...
		

Crossrefs

Cf. A128223.

Programs

  • Magma
    I:=[1,2,4,8,11]; [n le 5 select I[n] else Self(n-1) +2*Self(n-2) -2*Self(n-3) -Self(n-4) +self(n-5): n in [1..30]]; // G. C. Greubel, May 26 2018
  • Mathematica
    CoefficientList[Series[(1+x+2x^3)/((1-x)(1-x^2)^2),{x,0,50}],x] (* or *)
    LinearRecurrence[{1,2,-2,-1,1},{1,2,4,8,11},50] (* Harvey P. Dale, Apr 26 2011 *)
  • PARI
    x='x+O('x^30); Vec((1+x+2*x^3)/((1-x)*(1-x^2)^2)) \\ G. C. Greubel, May 26 2018
    

Formula

Even: a(2*n)= 2* n^2 +n +1, odd: a(2*n-1)= 2* n^2. - Frank Ellermann, Feb 11 2002
a(n) = Sum_{k=0..n} binomial(n, k mod 2). - Paul Barry, Jul 24 2003
a(n) = A128223(n) + 1. - Peter Kagey, Nov 17 2016
E.g.f.: (1 + x)*((2 + x)*cosh(x) + (1 + x)*sinh(x))/2. - Ilya Gutkovskiy, Nov 17 2016