cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053447 Multiplicative order of 4 mod 2n+1.

Original entry on oeis.org

1, 1, 2, 3, 3, 5, 6, 2, 4, 9, 3, 11, 10, 9, 14, 5, 5, 6, 18, 6, 10, 7, 6, 23, 21, 4, 26, 10, 9, 29, 30, 3, 6, 33, 11, 35, 9, 10, 15, 39, 27, 41, 4, 14, 11, 6, 5, 18, 24, 15, 50, 51, 6, 53, 18, 18, 14, 22, 6, 12, 55, 10, 50, 7, 7, 65, 9, 18, 34, 69, 23, 30, 14, 21, 74, 15, 12, 10, 26
Offset: 0

Views

Author

Keywords

Comments

For a set S = {x, y} (x < y), let f(S) = {2x, y - x}, then a(n) is the smallest k > 0 such that f_k({1, 2n}) = {1, 2n} where f_k(S) denotes iteration for k times. E.g., for n = 3 we have: f_1({1, 6}) = f({1, 6}) = {2, 5}, f_2({1, 6}) = f({2, 5}) = {3, 4}, f_3({1, 6}) = f({3, 4}) = {1, 6}. - Jianing Song, Jan 27 2019
From Jianing Song, Dec 24 2022: (Start)
Let psi = A002322. For n > 0, we have 4^(psi(2*n+1)/2) = 2^psi(2*n+1) == 1 (mod 2*n+1), so a(n) divides psi(2*n+1)/2 => a(n) <= psi(2*n+1)/2 <= n. a(n) = psi(2*n+1)/2 if and only if one of the two following conditions holds: (a) the multiplicative order of 2 modulo 2*n+1 is psi(2*n+1); (b) the multiplicative order of 2 modulo 2*n+1 is psi(2*n+1)/2, and psi(2*n+1) == 2 (mod 4).
Additionally, a(n) = n if and only if 2*n+1 = p is a prime, and one of the two following conditions holds: (a) 2 is a primitive root modulo p; (b) p == 3 (mod 4), and the multiplicative order of 2 modulo p is (p-1)/2 (in this case, we have p == 7 (mod 8) since 2 is a quadratic residue modulo p). Such primes p are listed in A216371. (End)

Crossrefs

Programs

  • GAP
    List([0..80],n->OrderMod(4,2*n+1)); # Muniru A Asiru, Feb 25 2019
  • Magma
    [1] cat [Modorder(4, 2*n+1): n in [1..100]]; // Vincenzo Librandi, Apr 01 2014
    
  • Mathematica
    Table[ MultiplicativeOrder[4, n], {n, 1, 160, 2}] (* Robert G. Wilson v, Apr 05 2011 *)
  • PARI
    a(n) = znorder(Mod(4, 2*n+1)); \\ Michel Marcus, Feb 05 2015
    

Formula

Let b = A002326, then a(n) = b(n) if b(n) is odd, otherwise a(n) = b(n)/2. - Joerg Arndt, Feb 03 2019