cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A001374 Number of relational systems on n nodes. Also number of directed 3-multigraphs with loops on n nodes.

Original entry on oeis.org

4, 136, 44224, 179228736, 9383939974144, 6558936236286040064, 62879572771326489528942592, 8439543710699844562674685252214784, 16110027001555070629022725866559372785352704, 442829046878106126159584032189649757399796014050181120
Offset: 1

Views

Author

Keywords

References

  • W. Oberschelp, "Strukturzahlen in endlichen Relationssystemen", in Contributions to Mathematical Logic (Proceedings 1966 Hanover Colloquium), pp. 199-213, North-Holland Publ., Amsterdam, 1968.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[2*GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[v];
    a[n_] := (s=0; Do[s += permcount[p]*4^edges[p], {p, IntegerPartitions[n]}]; s/n!);
    Array[a, 15] (* Jean-François Alcover, Jul 08 2018, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, 2*gcd(v[i],v[j]))) + sum(i=1, #v, v[i])}
    a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*4^edges(p)); s/n!} \\ Andrew Howroyd, Oct 22 2017
    
  • Python
    from itertools import combinations
    from math import prod, gcd, factorial
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A001374(n): return int(sum(Fraction(1<<((sum(p[r]*p[s]*gcd(r,s) for r,s in combinations(p.keys(),2))<<1)+sum(q*r**2 for q, r in p.items())<<1),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 10 2024

Extensions

More terms from Vladeta Jovovic, Jan 14 2000

A053467 Number of directed 2-multigraphs on n nodes.

Original entry on oeis.org

1, 6, 138, 22815, 29197989, 286181094816, 21712697070199704, 12980080058620326927885, 62082385554465497895132149640, 2405193620328895144597707267893468286, 762399006478986275307113015668690102196187810
Offset: 1

Views

Author

Vladeta Jovovic, Jan 13 2000

Keywords

Comments

A 2-multigraph is similar to an ordinary graph except there are 0, 1 or 2 edges between any two nodes (self-loops are not allowed).

Crossrefs

Programs

  • Mathematica
    Table[CycleIndex[PairGroup[SymmetricGroup[n], Ordered], t] /.Table[t[i] -> 1 + x^i + y^i, {i, 1, n^2}] /. {x -> 1, y -> 1}, {n, 1, 7}] (* Geoffrey Critzer, Mar 08 2011 *)
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[2*GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[v - 1];
    a[n_] := (s=0; Do[s += permcount[p]*3^edges[p], {p, IntegerPartitions[n]}]; s/n!);
    Array[a, 15] (* Jean-François Alcover, Jul 08 2018, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, 2*gcd(v[i],v[j]))) + sum(i=1, #v, v[i]-1)}
    a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*3^edges(p)); s/n!} \\ Andrew Howroyd, Oct 22 2017
    
  • Python
    from itertools import combinations
    from math import prod, gcd, factorial
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A053467(n): return int(sum(Fraction(3**((sum(p[r]*p[s]*gcd(r,s) for r,s in combinations(p.keys(),2))<<1)+sum(q*r**2 for q, r in p.items())-s),prod(q**r*factorial(r) for q, r in p.items())) for s, p in partitions(n,size=True))) # Chai Wah Wu, Jul 10 2024

Extensions

a(11) from Andrew Howroyd, Oct 22 2017

A053515 Number of connected directed 3-multigraphs on n nodes.

Original entry on oeis.org

1, 9, 710, 702995, 9167621626, 1601362624429243, 3837877364912125546166, 128777253726443722899317880176, 61454877368531170511811727162658812448, 422314689334495256777424027741114845781285378061
Offset: 1

Views

Author

Vladeta Jovovic, Jan 14 2000

Keywords

Crossrefs

Showing 1-3 of 3 results.