A053508 a(n) = binomial(n-1,3)*n^(n-4).
0, 0, 0, 1, 20, 360, 6860, 143360, 3306744, 84000000, 2338460520, 70946979840, 2332989862060, 82726831323136, 3148511132812500, 128071114403348480, 5546563698427324720, 254873089955815096320, 12387799656377835411984, 635043840000000000000000
Offset: 1
Keywords
References
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Prop. 5.3.2.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..250
Programs
-
GAP
List([1..25], n-> Binomial(n-1,3)*n^(n-4)); # G. C. Greubel, May 15 2019
-
Magma
[Binomial(n-1,3)*n^(n-4): n in [1..25]]; // G. C. Greubel, Nov 14 2017
-
Mathematica
Table[Binomial[n-1,3]n^(n-4),{n,25}] (* Harvey P. Dale, Jun 17 2014 *) With[{nmax = 25}, CoefficientList[Series[LambertW[-x]^4/4!, {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Nov 14 2017 *)
-
PARI
vector(25, n, binomial(n-1,3)*n^(n-4)) \\ G. C. Greubel, Jan 18 2017
-
Sage
[binomial(n-1,3)*n^(n-4) for n in (1..25)] # G. C. Greubel, May 15 2019
Formula
E.g.f.: LambertW(-x)^4/4!. - Vladeta Jovovic, Apr 07 2001