cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053549 Number of labeled rooted connected graphs.

Original entry on oeis.org

0, 1, 2, 12, 152, 3640, 160224, 13063792, 2012388736, 596666619648, 344964885948160, 392058233038486784, 880255154481199466496, 3916538634445633156373504, 34603083354426212294072477696, 607915214065957203519146330173440
Offset: 0

Views

Author

N. J. A. Sloane, Jan 16 2000

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 10, R_p.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.20, G(x).

Crossrefs

Cf. A006125.

Programs

  • Magma
    q:=30; m:=20; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (&+[2^Binomial(j, 2)*x^j/Factorial(j-1): j in [1..q]])/(&+[2^Binomial(k, 2)*x^k/Factorial(k):k in [0..q]]) )); [0] cat [Factorial(n)*b[n]: n in [1..m-1]]; // G. C. Greubel, May 16 2019
    
  • Maple
    add(2^binomial(n,2)*x^n/(n-1)!,n=1..31)/add(2^binomial(n,2)*x^n/n!,n=0..31);
  • Mathematica
    f[x_, lim_] := Sum[2^Binomial[n, 2]*x^n/(n - 1)!, {n, 1, lim}] / Sum[2^Binomial[n, 2]*x^n/n!, {n, 0, lim}]; nn = 15; Range[0, nn]! CoefficientList[Series[f[x, nn], {x, 0, nn}], x] (* T. D. Noe, Oct 21 2011 *)
  • PARI
    q=30; my(x='x+O('x^20)); concat([0], Vec(serlaplace( sum(j=1,q, 2^binomial(j, 2)*x^j/(j-1)!)/(sum(k=0,q,2^binomial(k, 2)*x^k/k!)) ))) \\ G. C. Greubel, May 16 2019
    
  • Sage
    q=30; m = 20; T = taylor(sum(2^binomial(j, 2)*x^j/factorial(j-1) for j in (1..q))/(sum(2^binomial(k, 2)*x^k/factorial(k) for k in (0..q))), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 16 2019

Formula

E.g.f.: (Sum_{n>1} 2^binomial(n, 2)*x^n/(n-1)!)/(Sum_{n>=0} 2^binomial(n, 2)*x^n/n!).
a(n) = n * A001187(n).