cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A198046 Exponential transform of A053549.

Original entry on oeis.org

1, 1, 3, 19, 225, 4841, 192355, 14537643, 2135997537, 616565334097, 351243585487331, 395958973398105283, 885030941975862363649, 3928075680727698371316537, 34658158001445631936261356547, 608435501761943981290097259909211
Offset: 0

Views

Author

Geoffrey Critzer, Oct 20 2011

Keywords

Comments

a(n) is the number of ways to designate a node in each connected component over all simple labeled graphs on n nodes.

Crossrefs

Cf. A053549.

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)-
          add(k*binomial(n, k)* 2^((n-k)*(n-k-1)/2)*g(k), k=1..n-1)/n)
        end:
    a:= proc(n) option remember; `if`(n=0, 1, add(
          binomial(n-1, j-1) *j*g(j) *a(n-j), j=1..n))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 17 2015
  • Mathematica
    nn=20; a=Sum[2^Binomial[n,2]x^n/n!,{n,0,nn}]; Range[0,nn]! CoefficientList[Series[Exp[x D[Log[a],x]], {x,0,nn}], x]
  • PARI
    seq(n)={Vec(serlaplace(exp(x*deriv(log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n))))))} \\ Andrew Howroyd, Jun 18 2018

Formula

E.g.f.: exp(A(x)) where A(x) is the e.g.f. for A053549.

Extensions

a(6), a(10) corrected by Alois P. Heinz, Mar 18 2015

A053550 Reversion of [1,2,12,152,3640,...] (A053549).

Original entry on oeis.org

1, 2, -4, 72, -2168, 114864, -10671216, 1787642272, -557621854080, 332091938264960, -383877081387120640, 870132605833456937472, -3891989736269204588784384, 34485850497928703119235323904, -606809291874393995479640098992128
Offset: 1

Views

Author

N. J. A. Sloane, Jan 16 2000

Keywords

A053551 REVEGF transform of [1,2,12,152,3640,...] (A053549).

Original entry on oeis.org

1, 4, 12, 128, -2360, 225504, -31479056, 7663698176, -3268091071872, 2502155367185920, -3525130171601665792, 9336272433375180957696, -47283253230423958235278336, 463782058088334028985937178624, -8890882429150197015851583349985280
Offset: 1

Views

Author

N. J. A. Sloane, Jan 16 2000

Keywords

A053552 E.g.f. is obtained by reversion of e.g.f. for A053549.

Original entry on oeis.org

1, -2, 0, -32, -1000, -61104, -6622448, -1274984320, -444075170688, -286507347953920, -349824570713902592, -821921957328576534528, -3760909487461975276739584, -33794780371666462710538704896, -599695123654141294961479035617280
Offset: 1

Views

Author

N. J. A. Sloane, Jan 16 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.20, G^<-1>(x).

Programs

  • Maple
    seriestoseries(G, 'revogf'); # where G is e.g.f. for A053549; i.e. use ordinary reversion on the e.g.f. and treat answer as another e.g.f.

A001187 Number of connected labeled graphs with n nodes.

Original entry on oeis.org

1, 1, 1, 4, 38, 728, 26704, 1866256, 251548592, 66296291072, 34496488594816, 35641657548953344, 73354596206766622208, 301272202649664088951808, 2471648811030443735290891264, 40527680937730480234609755344896, 1328578958335783201008338986845427712
Offset: 0

Views

Author

Keywords

Comments

"Based on experimental data obtained using the software LattE [14] and the Online Encyclopedia of Integer Sequences [19], we make the following conjecture: Conjecture 11. For j >= 2, Vol(C_j ) is equal to the number of labeled connected graphs on j - 1 vertices." [Beck et al., 2011]
For n > 1, a(n) is log-convex. Furthermore, a(n+1)*a(n-1) ~ 2*a(n)*a(n). - Ran Pan, Oct 28 2015
a(n) is also the number of tournaments on {1,...,n} for which 1 is reachable from every vertex. - Don Knuth, Aug 06 2020

Examples

			E.g.f.: 1 + x + x^2/2! + 4*x^3/3! + 38*x^4/4! + 728*x^5/5! + 26704*x^6/6! + 1866256*x^7/7! + 251548592*x^8/8! + ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 398-402.
  • D. G. Cantor, personal communication.
  • Cowan, D. D.; Mullin, R. C.; Stanton, R. G. Counting algorithms for connected labelled graphs. Proceedings of the Sixth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1975), pp. 225-236. Congressus Numerantium, No. XIV, Utilitas Math., Winnipeg, Man., 1975. MR0414417 (54 #2519).
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 518.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 7.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.1.
  • H. S. Wilf, Generatingfunctionology, Academic Press, NY, 1990, p. 78.

Crossrefs

Logarithmic transform of A006125 (labeled graphs).
Row sums of triangle A062734.
Cf. A053549.

Programs

  • Magma
    m:=30;
    f:= func< x | 1+Log( (&+[2^Binomial(n,2)*x^n/Factorial(n): n in [0..m+3]]) ) >;
    R:=PowerSeriesRing(Rationals(), m);
    Coefficients(R!(Laplace( f(x) ))); // G. C. Greubel, Oct 04 2022
    
  • Maple
    t1 := 1+log( add(2^binomial(n,2)*x^n/n!,n=0..30)): t2 := series(t1,x,30): A001187 := n->n!*coeff(t2,x,n);
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)-
          add(k*binomial(n, k)* 2^((n-k)*(n-k-1)/2)*a(k), k=1..n-1)/n)
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 26 2013
    # Alternative:
    a := proc(n) option remember;
        2^((n-1)*n/2) - add(binomial(n-1, k)*2^((k-n+1)*(k-n+2)/2)*a(k+1), k=0..n-2)
    end:
    seq(a(n), n=0..16); # Peter Luschny, Feb 21 2023
  • Mathematica
    m:=20; g = Sum[2^Binomial[n, 2] x^n/n!, {n,0,m}]; Range[0,m]! CoefficientList[Series[Log[g] +1, {x,0,m}], x] (* Geoffrey Critzer, Nov 12 2011 *)
    a[n_]:= a[n]= If[n==0, 1, 2^(n*(n-1)/2) - Sum[k*Binomial[n, k]* 2^((n-k)*(n-k-1)/2)*a[k], {k,1,n-1}]/n]; Table[a[n], {n,0,20}] (* Jean-François Alcover, Apr 09 2014, after Alois P. Heinz *)
    a[ n_]:= If[n<0, 0, n! SeriesCoefficient[1 +Log[ Sum[2^(k(k-1)/2) x^k/k!, {k,0, n}]], {x, 0, n}]]; (* Michael Somos, Jul 11 2019 *)
  • PARI
    {a(n) = if(n<0, 0, n! * polcoeff( 1 + log( sum( k=0, n, 2^binomial(k, 2) * x^k / k!, x * O(x^n))), n))}; /* Michael Somos, Jun 12 2000 */
    
  • Python
    from functools import lru_cache
    import gmpy2
    @lru_cache(None)
    def A001187(n):
      if n == 0:
        return 1
      s = gmpy2.mpz(0)
      for k in range(1, n):
        s += k * gmpy2.comb(n, k) * 2**((n - k)*(n - k - 1)//2) * A001187(k)
      return 2**(n*(n-1)//2) - s // n # John Reimer Morales, Aug 15 2025
  • Sage
    @cached_function
    def A001187(n):
        if n == 0: return 1
        return 2^(n*(n-1)/2)- sum(k*binomial(n, k)*2^((n-k)*(n-k-1)/2)*A001187(k) for k in (1..n-1))/n
    [A001187(n) for n in (0..15)] # Peter Luschny, Jan 17 2016
    

Formula

n * 2^binomial(n, 2) = Sum_{k=1..n} binomial(n, k) * k * a(k) * 2^binomial(n-k, 2).
E.g.f.: 1 + log(Sum_{n>=0} 2^binomial(n, 2) * x^n / n!). - Michael Somos, Jun 12 2000

A095983 Number of 2-edge-connected labeled graphs on n nodes.

Original entry on oeis.org

0, 0, 0, 1, 10, 253, 11968, 1047613, 169181040, 51017714393, 29180467201536, 32121680070545657, 68867078000231169536, 290155435185687263172693, 2417761175748567327193407488, 40013922635723692336670167608181, 1318910073755307133701940625759574016
Offset: 0

Views

Author

Yifei Chen (yifei(AT)mit.edu), Jul 17 2004

Keywords

Comments

From Falk Hüffner, Jun 28 2018: (Start)
Essentially the same sequence arises as the number of connected bridgeless labeled graphs (graphs that are k-edge connected for k >= 2, starting elements of this sequence are 1, 1, 0, 1, 10, 253, 11968, ...).
Labeled version of A007146. (End)
The spanning edge-connectivity of a graph is the minimum number of edges that must be removed (without removing incident vertices) to obtain a graph that is disconnected or covers fewer vertices. This sequence counts graphs with spanning edge-connectivity >= 2, which, for n > 1, are connected graphs with no bridges. - Gus Wiseman, Sep 20 2019

Crossrefs

The unlabeled version is A007146.
Row sums of A327069 if the first two columns are removed.
BII-numbers of set-systems with spanning edge-connectivity >= 2 are A327109.
Graphs with spanning edge-connectivity 2 are A327146.
Graphs with non-spanning edge-connectivity >= 2 are A327200.
2-vertex-connected graphs are A013922.
Graphs without endpoints are A059167.
Graphs with spanning edge-connectivity 1 are A327071.

Programs

  • Mathematica
    seq[n_] := Module[{v, p, q, c}, v[_] = 0; p = x*D[#, x]& @ Log[ Sum[ 2^Binomial[k, 2]*x^k/k!, {k, 0, n}] + O[x]^(n+1)]; q = x*E^p; p -= q; For[k = 3, k <= n, k++, c = Coefficient[p, x, k]; v[k] = c*(k-1)!; p -= c*q^k]; Join[{0}, Array[v, n]]];
    seq[16] (* Jean-François Alcover, Aug 13 2019, after Andrew Howroyd *)
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],spanEdgeConn[Range[n],#]>=2&]],{n,0,5}] (* Gus Wiseman, Sep 20 2019 *)
  • PARI
    \\ here p is initially A053549, q is A198046 as e.g.f.s.
    seq(n)={my(v=vector(n));
    my(p=x*deriv(log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n))));
    my(q=x*exp(p)); p-=q;
    for(k=3, n, my(c=polcoeff(p,k)); v[k]=c*(k-1)!; p-=c*q^k);
    concat([0],v)} \\ Andrew Howroyd, Jun 18 2018
    
  • PARI
    seq(n)={my(p=x*deriv(log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n)))); Vec(serlaplace(log(x/serreverse(x*exp(p)))/x-1), -(n+1))} \\ Andrew Howroyd, Dec 28 2020

Formula

a(n) = A001187(n) - A327071(n). - Gus Wiseman, Sep 20 2019

Extensions

Name corrected and more terms from Pavel Irzhavski, Nov 01 2014
Offset corrected by Falk Hüffner, Jun 17 2018
a(12)-a(16) from Andrew Howroyd, Jun 18 2018

A274804 The exponential transform of sigma(n).

Original entry on oeis.org

1, 1, 4, 14, 69, 367, 2284, 15430, 115146, 924555, 7991892, 73547322, 718621516, 7410375897, 80405501540, 914492881330, 10873902417225, 134808633318271, 1738734267608613, 23282225008741565, 323082222240744379, 4638440974576329923, 68794595993688306903
Offset: 0

Views

Author

Johannes W. Meijer, Jul 27 2016

Keywords

Comments

The exponential transform [EXP] transforms an input sequence b(n) into the output sequence a(n). The EXP transform is the inverse of the logarithmic transform [LOG], see the Weisstein link and the Sloane and Plouffe reference. This relation goes by the name of Riddell's formula. For information about the logarithmic transform see A274805. The EXP transform is related to the multinomial transform, see A274760 and the second formula.
The definition of the EXP transform, see the second formula, shows that n >= 1. To preserve the identity LOG[EXP[b(n)]] = b(n) for n >= 0 for a sequence b(n) with offset 0 the shifted sequence b(n-1) with offset 1 has to be used as input for the exponential transform, otherwise information about b(0) will be lost in transformation.
In the a(n) formulas, see the examples, the multinomial coefficients A178867 appear.
We observe that a(0) = 1 and provides no information about any value of b(n), this notwithstanding it is customary to start the a(n) sequence with a(0) = 1.
The Maple programs can be used to generate the exponential transform of a sequence. The first program uses a formula found by Alois P. Heinz, see A007446 and the first formula. The second program uses the definition of the exponential transform, see the Weisstein link and the second formula. The third program uses information about the inverse of the exponential transform, see A274805.
Some EXP transform pairs are, n >= 1: A000435(n) and A065440(n-1); 1/A000027(n) and A177208(n-1)/A177209(n-1); A000670(n) and A075729(n-1); A000670(n-1) and A014304(n-1); A000045(n) and A256180(n-1); A000290(n) and A033462(n-1); A006125(n) and A197505(n-1); A053549(n) and A198046(n-1); A000311(n) and A006351(n); A030019(n) and A134954(n-1); A038048(n) and A053529(n-1); A193356(n) and A003727(n-1).

Examples

			Some a(n) formulas, see A178867:
a(0) = 1
a(1) = x(1)
a(2) = x(1)^2 + x(2)
a(3) = x(1)^3 + 3*x(1)*x(2) + x(3)
a(4) = x(1)^4 + 6*x(1)^2*x(2) + 4*x(1)*x(3) + 3*x(2)^2 + x(4)
a(5) = x(1)^5 + 10*x(1)^3*x(2) + 10*x(1)^2*x(3) + 15*x(1)*x(2)^2 + 5*x(1)*x(4) + 10*x(2)*x(3) + x(5)
		

References

  • Frank Harary and Edgar M. Palmer, Graphical Enumeration, 1973.
  • Robert James Riddell, Contributions to the theory of condensation, Dissertation, University of Michigan, Ann Arbor, 1951.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.

Crossrefs

Programs

  • Maple
    nmax:=21: with(numtheory): b := proc(n): sigma(n) end: a:= proc(n) option remember; if n=0 then 1 else add(binomial(n-1, j-1) * b(j) *a(n-j), j=1..n) fi: end: seq(a(n), n=0..nmax); # End first EXP program.
    nmax:= 21: with(numtheory): b := proc(n): sigma(n) end: t1 := exp(add(b(n)*x^n/n!, n=1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n!*coeff(t2, x, n) end: seq(a(n), n=0..nmax); # End second EXP program.
    nmax:=21: with(numtheory): b := proc(n): sigma(n) end: f := series(log(1+add(q(n)*x^n/n!, n=1..nmax+1)), x, nmax+1): d := proc(n): n!*coeff(f, x, n) end: a(0):=1: q(0):=1: a(1):=b(1): q(1):=b(1): for n from 2 to nmax+1 do q(n) := solve(d(n)-b(n), q(n)): a(n):=q(n): od: seq(a(n), n=0..nmax); # End third EXP program.
  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n-1, j-1]*DivisorSigma[1, j]*a[n-j], {j, 1, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 22 2017 *)
    nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[1, k]*x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 08 2021 *)

Formula

a(n) = Sum_{j=1..n} (binomial(n-1,j-1) * b(j) * a(n-j)), n >= 1 and a(0) = 1, with b(n) = A000203(n) = sigma(n).
E.g.f.: exp(Sum_{n >= 1} b(n)*x^n/n!) with b(n) = sigma(n) = A000203(n).

A327072 Triangle read by rows where T(n,k) is the number of labeled simple connected graphs with n vertices and exactly k bridges.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 1, 0, 3, 0, 10, 12, 0, 16, 0, 253, 200, 150, 0, 125, 0, 11968, 7680, 3600, 2160, 0, 1296, 0, 1047613, 506856, 190365, 68600, 36015, 0, 16807, 0, 169181040, 58934848, 16353792, 4695040, 1433600, 688128, 0, 262144, 0, 51017714393, 12205506096, 2397804444, 500828832, 121706550, 33067440, 14880348, 0, 4782969, 0
Offset: 0

Views

Author

Gus Wiseman, Aug 24 2019

Keywords

Comments

A bridge is an edge that, if removed without removing any incident vertices, disconnects the graph. Connected graphs with no bridges are counted by A095983 (2-edge-connected graphs).
Warning: In order to be consistent with A001187, we have treated the n = 0 and n = 1 cases in ways that are not consistent with A095983.

Examples

			Triangle begins:
    1
    1   0
    0   1   0
    1   0   3   0
   10  12   0  16   0
  253 200 150   0 125   0
		

Crossrefs

Column k = 0 is A095983, if we assume A095983(0) = A095983(1) = 1.
Column k = 1 is A327073.
Column k = n - 1 is A000272.
Row sums are A001187.
The unlabeled version is A327077.
Row sums without the first column are A327071.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[If[n<=1&&k==0,1,Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[csm[#]]==1&&Count[Table[Length[Union@@Delete[#,i]]1,{i,Length[#]}],True]==k&]]],{n,0,4},{k,0,n}]
  • PARI
    \\ p is e.g.f. of A053549.
    T(n)={my(p=x*deriv(log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n))), v=Vec(1+serreverse(serreverse(log(x/serreverse(x*exp(p))))/exp(x*y+O(x^n))))); vector(#v, k, max(0,k-2)!*Vecrev(v[k], k)) }
    { my(A=T(8)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Dec 28 2020

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 28 2020

A177777 E.g.f. satisfies: L(x) = x*Sum_{n>=0} (1/n!)*Product_{k=0..n-1} L(2^k*x).

Original entry on oeis.org

1, 2, 12, 152, 3640, 160224, 13063792, 2012388736, 596666619648, 344964885948160, 392058233038486784, 880255154481199466496, 3916538634445633156373504, 34603083354426212294072477696
Offset: 1

Views

Author

Paul D. Hanna, May 19 2010

Keywords

Comments

An analog of the LambertW function.
A053549 without the leading term. - R. J. Mathar, May 24 2010

Examples

			E.g.f.: L(x) = x + 2*x^2/2! + 12*x^3/3! + 152*x^4/4! + 3640*x^5/5! +...
which is invariant under the series:
L(x)/x = 1 + L(x) + L(x)L(2x)/2! + L(x)L(2x)L(4x)/3! + L(x)L(2x)L(4x)L(8x)/4! +...
Let B(x) = 1 + x + 2*x^2/2! + 8*x^3/3! + 64*x^4/4! + 1024*x^5/5! +...
so that log(B(x)) = x + x^2/2! + 4*x^3/3! + 38*x^4/4! + 728*x^5/5! +...+ A001187(n)*x^n/n! +...
then L(x) = x*d/dx log(B(x)) which also satisfies:
1/B(x) = 1 - L(x) + L(x)L(2x)/2! - L(x)L(2x)L(4x)/3! + L(x)L(2x)L(4x)L(8x)/4! -+...
		

Programs

  • PARI
    {a(n,r=1)=local(A=x+x^2);for(i=1,n,A=x*sum(m=0,n,r^m/m!*prod(k=0,m-1,subst(A,x,2^k*x+x*O(x^n)))));n!*polcoeff(A,n)}

Formula

a(n) = n*A001187(n), where A001187(n) is the number of connected labeled graphs with n nodes.
Let B(x) = Sum_{n>=0} 2^(n(n-1)/2)*x^n/n! then
. L(x) = x*d/dx log(B(x)) = x*B'(x)/B(x) and
. 1/B(x) = Sum_{n>=0} (-1)^n/n!*Product_{k=0..n-1} L(2^k*x).

A228315 Triangular array read by rows: T(n,k) is the number of rooted labeled simple graphs on {1,2,...,n} such that the root is in a component of size k; n>=1, 1<=k<=n.

Original entry on oeis.org

1, 2, 2, 6, 6, 12, 32, 24, 48, 152, 320, 160, 240, 760, 3640, 6144, 1920, 1920, 4560, 21840, 160224, 229376, 43008, 26880, 42560, 152880, 1121568, 13063792, 16777216, 1835008, 688128, 680960, 1630720, 8972544, 104510336, 2012388736
Offset: 1

Views

Author

Geoffrey Critzer, Aug 26 2013

Keywords

Comments

Row sums = A095340.
Column 1 = A123903.
T(n,k) = A223894(n,k)*k.
Diagonal = A053549.

Examples

			1;
2,    2;
6,    6,    12;
32,   24,   48,    152;
320,  160,  240,   760,    3640;
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973, page 7.

Crossrefs

Cf. A070166.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)-
          add(k*binomial(n, k)* 2^((n-k)*(n-k-1)/2)*b(k), k=1..n-1)/n)
        end:
    T:= (n, k)-> binomial(n, k)*k*b(k)*2^((n-k)*(n-k-1)/2):
    seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, Aug 26 2013
  • Mathematica
    nn = 10; g = Sum[2^Binomial[n, 2] x^n/n!, {n, 0, nn}]; a =
    Drop[Range[0, nn]! CoefficientList[Series[Log[g], {x, 0, nn}], x],
      1]; Table[
      Table[Binomial[n, k] k a[[k]] 2^Binomial[n - k, 2], {k, 1, n}], {n,
       1, 7}] // Grid

Formula

T(n,k) = binomial(n,k)*k*A001187(k)*A006125(n-k).
Showing 1-10 of 12 results. Next