cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A327071 Number of labeled simple connected graphs with n vertices and at least one bridge, or graphs with spanning edge-connectivity 1.

Original entry on oeis.org

0, 0, 1, 3, 28, 475, 14736, 818643, 82367552, 15278576679, 5316021393280, 3519977478407687, 4487518206535452672, 11116767463976825779115, 53887635281876408097483776, 513758302006787897939587736715, 9668884580476067306398361085853696
Offset: 0

Views

Author

Gus Wiseman, Aug 24 2019

Keywords

Comments

A bridge is an edge that, if removed without removing any incident vertices, disconnects the graph. Connected graphs with no bridges are counted by A095983 (2-edge-connected graphs).
The spanning edge-connectivity of a graph is the minimum number of edges that must be removed (without removing incident vertices) to obtain a disconnected or empty graph.

Crossrefs

Column k = 1 of A327069.
The unlabeled version is A052446.
Connected graphs without bridges are A007146.
The enumeration of labeled connected graphs by number of bridges is A327072.
Connected graphs with exactly one bridge are A327073.
Graphs with non-spanning edge-connectivity 1 are A327079.
BII-numbers of set-systems with spanning edge-connectivity 1 are A327111.
Covering set-systems with spanning edge-connectivity 1 are A327145.
Graphs with spanning edge-connectivity 2 are A327146.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],spanEdgeConn[Range[n],#]==1&]],{n,0,4}]

Formula

a(1) = 0; a(n > 1) = A001187(n) - A095983(n).

A327069 Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and spanning edge-connectivity k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 4, 3, 1, 0, 26, 28, 9, 1, 0, 296, 475, 227, 25, 1, 0, 6064, 14736, 10110, 1782, 75, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Aug 23 2019

Keywords

Comments

The spanning edge-connectivity of a graph is the minimum number of edges that must be removed (without removing incident vertices) to obtain a disconnected or empty graph.
We consider a graph with one vertex and no edges to be disconnected.

Examples

			Triangle begins:
    1
    1   0
    1   1   0
    4   3   1   0
   26  28   9   1   0
  296 475 227  25   1   0
		

Crossrefs

Row sums are A006125.
Column k = 0 is A054592, if we assume A054592(1) = 1.
Column k = 1 is A327071.
Column k = 2 is A327146.
The unlabeled version (except with offset 1) is A263296.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],spanEdgeConn[Range[n],#]==k&]],{n,0,5},{k,0,n}]

Extensions

a(21)-a(27) from Robert Price, May 25 2021

A327079 Number of labeled simple connected graphs covering n vertices with at least one bridge that is not an endpoint/leaf (non-spanning edge-connectivity 1).

Original entry on oeis.org

0, 0, 1, 0, 12, 180, 4200, 157920, 9673664, 1011129840, 190600639200, 67674822473280, 46325637863907072, 61746583700640860736, 161051184122415878112640, 824849999242893693424992000, 8317799170120961768715123118080
Offset: 0

Views

Author

Gus Wiseman, Aug 25 2019

Keywords

Comments

A bridge is an edge that, if removed without removing any incident vertices, disconnects the graph. Graphs with no bridges are counted by A095983 (2-edge-connected graphs).
Also labeled simple connected graphs covering n vertices with non-spanning edge-connectivity 1, where the non-spanning edge-connectivity of a graph is the minimum number of edges that must be removed (along with any non-covered vertices) to obtain a disconnected or empty graph.

Crossrefs

Column k = 1 of A327149.
The non-covering version is A327231.
Connected bridged graphs (spanning edge-connectivity 1) are A327071.
BII-numbers of graphs with non-spanning edge-connectivity 1 are A327099.
Covering set-systems with non-spanning edge-connectivity 1 are A327129.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&eConn[#]==1&]],{n,0,4}]

Formula

a(n) = A001187(n) - A322395(n) for n > 2. - Andrew Howroyd, Aug 27 2019
Inverse binomial transform of A327231.

Extensions

Terms a(6) and beyond from Andrew Howroyd, Aug 27 2019

A327077 Triangle read by rows where T(n,k) is the number of unlabeled simple connected graphs with n vertices and k bridges.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 3, 1, 0, 2, 0, 11, 4, 3, 0, 3, 0, 60, 25, 14, 7, 0, 6, 0, 502, 197, 91, 34, 18, 0, 11, 0, 7403, 2454, 826, 267, 100, 44, 0, 23, 0, 197442, 48201, 11383, 2800, 831, 259, 117, 0, 47, 0
Offset: 0

Views

Author

Gus Wiseman, Aug 26 2019

Keywords

Comments

A bridge is an edge that, if removed without removing any incident vertices, disconnects the graph. Unlabeled connected graphs with no bridges are counted by A007146 (unlabeled graphs with spanning edge-connectivity >= 2).

Examples

			Triangle begins:
     1
     1    0
     0    1   0
     1    0   1   0
     3    1   0   2   0
    11    4   3   0   3  0
    60   25  14   7   0  6  0
   502  197  91  34  18  0 11  0
  7403 2454 826 267 100 44  0 23 0
  ...
		

Crossrefs

The labeled version is A327072.
Row sums are A001349.
Row sums without the k = 0 column are A052446.
Column k = 0 is A007146, if we assume A007146(0) = 1.
Column k = 1 is A327074.
Column k = n - 1 is A000055.

Extensions

a(21)-a(54) from Andrew Howroyd, Aug 28 2019

A327073 Number of labeled simple connected graphs with n vertices and exactly one bridge.

Original entry on oeis.org

0, 0, 1, 0, 12, 200, 7680, 506856, 58934848, 12205506096, 4595039095680, 3210660115278000, 4240401342141499392, 10743530775519296581944, 52808688280248604235191296, 507730995579614277599205009240, 9603347831901155679455061048606720, 358743609478638769812094362544644831968
Offset: 0

Views

Author

Gus Wiseman, Aug 24 2019

Keywords

Comments

A bridge is an edge that, if removed without removing any incident vertices, disconnects the graph. Connected graphs with no bridges are counted by A095983 (2-edge-connected graphs).

Crossrefs

Column k = 1 of A327072.
The unlabeled version is A327074.
Connected graphs with no bridges are A007146.
Connected graphs whose bridges are all leaves are A322395.
Connected graphs with at least one bridge are A327071.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[csm[#]]==1&&Count[Table[Length[Union@@Delete[#,i]]1,{i,Length[#]}],True]==1&]],{n,0,5}]
  • PARI
    \\ See A095983.
    seq(n)={my(p=x*deriv(log(sum(k=0, n-1, 2^binomial(k, 2) * x^k / k!) + O(x^n)))); Vec(serlaplace(log(x/serreverse(x*exp(p)))^2/2), -(n+1)) } \\ Andrew Howroyd, Dec 28 2020

Formula

E.g.f.: (x + Sum_{k>=2} A095983(k)*x^k/(k-1)!)^2/2. - Andrew Howroyd, Aug 25 2019

Extensions

Terms a(6) and beyond from Andrew Howroyd, Aug 25 2019

A327231 Number of labeled simple connected graphs covering a subset of {1..n} with at least one non-endpoint bridge (non-spanning edge-connectivity 1).

Original entry on oeis.org

0, 0, 1, 3, 18, 250, 5475, 191541, 11065572, 1104254964, 201167132805, 69828691941415, 47150542741904118, 62354150876493659118, 161919876753750972738791, 827272271567137357352991705, 8331016130913639432634637862600, 165634930763383717802534343776893928
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Comments

A bridge is an edge whose removal disconnected the graph, while an endpoint is a vertex belonging to only one edge. The non-spanning edge-connectivity of a graph is the minimum number of edges that must be removed to obtain a graph whose edge-set is disconnected or empty.

Examples

			The a(2) = 1 through a(4) = 18 edge-sets:
  {12}  {12}  {12}
        {13}  {13}
        {23}  {14}
              {23}
              {24}
              {34}
              {12,13,24}
              {12,13,34}
              {12,14,23}
              {12,14,34}
              {12,23,34}
              {12,24,34}
              {13,14,23}
              {13,14,24}
              {13,23,24}
              {13,24,34}
              {14,23,24}
              {14,23,34}
		

Crossrefs

Column k = 1 of A327148.
The covering version is A327079.
Connected bridged graphs (spanning edge-connectivity 1) are A327071.
BII-numbers of set-systems with non-spanning edge-connectivity 1 are A327099.
Covering set-systems with non-spanning edge-connectivity 1 are A327129.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    edgeConnSys[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],edgeConnSys[#]==1&]],{n,0,4}]

Formula

Binomial transform of A327079.

Extensions

Terms a(6) and beyond from Andrew Howroyd, Sep 11 2019
Showing 1-6 of 6 results.