A053599 Number of nonempty subsequences {s(k)} of 1..n such that the difference sequence is palindromic.
1, 3, 7, 13, 23, 37, 59, 89, 135, 197, 291, 417, 607, 861, 1243, 1753, 2519, 3541, 5075, 7121, 10191, 14285, 20427, 28617, 40903, 57285, 81859, 114625, 163775, 229309, 327611, 458681, 655287, 917429, 1310643, 1834929, 2621359, 3669933, 5242795, 7339945
Offset: 1
Examples
For n=4 the 13 sequences are 1,2,3,4,12,13,14,23,24,34,123,234,1234.
Links
- Andrew Woods, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2,1,-4,2).
Programs
-
Mathematica
t={1,1};Do[AppendTo[t,t[[-2]]+t[[-1]]];AppendTo[t,2*t[[-2]]],{n,40}];Nest[Accumulate,t,2] (* Vladimir Joseph Stephan Orlovsky, Jan 29 2012 *)
Formula
a(1)=1, a(2)=3 and, for n > 2, a(n) = 2*a(n-2) + 2*n - 1.
G.f.: x*(1+x)/((1-x)^2*(1-2*x^2)). - Colin Barker, Mar 28 2012
a(n) = 5*2^((n+1)/2) - 2*n - 7 for odd n, 7*2^(n/2) - 2*n - 7 for even n. - Andrew Woods, May 19 2012
Extensions
Corrected by T. D. Noe, Nov 08 2006
Comments