A053603 Number of ways to write n as an ordered sum of two nonzero triangular numbers.
0, 0, 1, 0, 2, 0, 1, 2, 0, 2, 0, 2, 1, 2, 0, 0, 4, 0, 2, 0, 1, 2, 2, 0, 2, 2, 0, 2, 0, 2, 1, 4, 0, 0, 2, 0, 2, 2, 2, 2, 0, 0, 3, 2, 0, 0, 4, 0, 2, 2, 0, 4, 0, 0, 0, 2, 3, 2, 2, 0, 2, 2, 0, 0, 2, 2, 2, 2, 0, 2, 2, 0, 3, 2, 0, 0, 4, 0, 0, 2, 0, 6, 0, 2, 2, 0, 0, 2, 2, 0, 1, 2, 2
Offset: 0
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Programs
-
Haskell
a053603 n = sum $ map (a010054 . (n -)) $ takeWhile (< n) $ tail a000217_list -- Reinhard Zumkeller, Jun 27 2013
-
Mathematica
nmax = 100; m0 = 10; A053603 := Table[a[n], {n, 0, nmax}]; Clear[counts]; counts[m_] := counts[m] = (Clear[a]; a[A053603);%20counts%5Bm%20=%20m0%5D;%20counts%5Bm%20=%202*m%5D;%20While%5B%20counts%5Bm%5D%20!=%20counts%5Bm/2%5D,%20m%20=%202*m%5D;%20A053603%20(*%20_Jean-Fran%C3%A7ois%20Alcover">] = 0; Do[k = i*(i+1)/2 + j*(j+1)/2; a[k] = a[k]+1, {i, 1, m}, {j, 1, m}]; A053603); counts[m = m0]; counts[m = 2*m]; While[ counts[m] != counts[m/2], m = 2*m]; A053603 (* _Jean-François Alcover, Sep 05 2013 *)
-
PARI
istriang(n)={n>0 && issquare(8*n+1);} a(n) = { my(t=1, ct=0, j=1); while (t
Joerg Arndt, Sep 05 2013
Formula
G.f.: ( Sum_{k>=1} x^(k*(k+1)/2) )^2. - Ilya Gutkovskiy, Dec 24 2016
a(n) = Sum_{k=1..n-1} c(k) * c(n-k), where c(n) = A010054(n). - Wesley Ivan Hurt, Jan 06 2024
Comments