cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053618 a(n) = ceiling(binomial(n,4)/n).

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 5, 9, 14, 21, 30, 42, 55, 72, 91, 114, 140, 170, 204, 243, 285, 333, 385, 443, 506, 575, 650, 732, 819, 914, 1015, 1124, 1240, 1364, 1496, 1637, 1785, 1943, 2109, 2285, 2470, 2665, 2870, 3086, 3311, 3548, 3795, 4054, 4324
Offset: 1

Views

Author

N. J. A. Sloane, Mar 25 2000

Keywords

Crossrefs

Programs

  • Magma
    [Ceiling(Binomial(n,4)/n): n in [1..60]]; // G. C. Greubel, May 16 2019
    
  • Mathematica
    CoefficientList[Series[x^4*(1-x+x^2)*(1-x+x^2+x^4)/((1-x)^3*(1-x^8)), {x,0,60}], x] (* G. C. Greubel, May 16 2019 *)
  • PARI
    concat([0,0,0], Vec(x^4*(x^2-x+1)*(x^4+x^2-x+1) / ((x-1)^4*(x+1)*(x^2+1)*(x^4+1)) + O(x^60))) \\ Colin Barker, Jan 20 2015
    
  • Sage
    [ceil(binomial(n,4)/n) for n in (1..60)] # G. C. Greubel, May 16 2019

Formula

a(n) = ( 2*n^3 - 12*n^2 + 22*n - 3 + 9*(-1)^n + 3*(1+(-1)^n)*(-1)^(n*(n-1)/2) - 6*(1 + (-1)^n)*(-1)^floor(n/4) )/48. - Luce ETIENNE, Jan 20 2015
G.f.: x^4*(1 - x + x^2)*(1 - x + x^2 + x^4)/((1-x)^3*(1-x^8)). - Colin Barker, Jan 20 2015