A007997 a(n) = ceiling((n-3)(n-4)/6).
0, 0, 1, 1, 2, 4, 5, 7, 10, 12, 15, 19, 22, 26, 31, 35, 40, 46, 51, 57, 64, 70, 77, 85, 92, 100, 109, 117, 126, 136, 145, 155, 166, 176, 187, 199, 210, 222, 235, 247, 260, 274, 287, 301, 316, 330, 345, 361, 376, 392, 409, 425, 442, 460, 477, 495, 514, 532, 551, 571, 590, 610
Offset: 3
A032192 Number of necklaces with 7 black beads and n-7 white beads.
1, 1, 4, 12, 30, 66, 132, 246, 429, 715, 1144, 1768, 2652, 3876, 5538, 7752, 10659, 14421, 19228, 25300, 32890, 42288, 53820, 67860, 84825, 105183, 129456, 158224, 192130, 231880, 278256, 332112, 394383, 466089, 548340
Offset: 7
Keywords
Comments
"CIK[ 7 ]" (necklace, indistinct, unlabeled, 7 parts) transform of 1, 1, 1, 1, ...
The g.f. is Z(C_7,x)/x^7, the 7-variate cycle index polynomial for the cyclic group C_7, with substitution x[i]->1/(1-x^i), i=1,...,7. Therefore by Polya enumeration a(n+7) is the number of cyclically inequivalent 7-necklaces whose 7 beads are labeled with nonnegative integers such that the sum of labels is n, for n=0,1,2,... See A102190 for Z(C_7,x) and the comment in A032191 on the equivalence of this problem with the one given in the 'Name' line. - Wolfdieter Lang, Feb 15 2005
From Petros Hadjicostas, Dec 08 2017: (Start)
For p prime, if a_p(n) is the number of necklaces with p black beads and n-p white beads, then (a_p(n): n>=1) = CIK[p](1, 1, 1, 1, ...). Since CIK[k](B(x)) = (1/k)*Sum_{d|k} phi(d)*B(x^d)^{k/d} with k = p and B(x) = x + x^2 + x^3 + ... = x/(1-x), we get Sum_{n>=1} a_p(n)*x^n = ((p-1)/(1 - x^p) + 1/(1 - x)^p)*x^p/p, which is Herbert Kociemba's general formula for the g.f. when p is prime.
We immediately get a_p(n) = ((p-1)/p)*I(p|n) + (1/p)*C(n-1,p-1) = ((p-1)/p)*I(p|n) + (1/n)*C(n,p) = ceiling(C(n,p)/n), which is a generalization of the conjecture made by N. J. A. Sloane and Wolfdieter Lang. (Here, I(condition) = 1 if the condition holds, and 0 otherwise. Also, as usual, for integers n and k, C(n,k) = 0 if 0 <= n < k.)
Since the sequence (a_p(n): n>=1) is column k = p of A047996(n,k) = T(n,k), we get from the documentation of the latter sequence that a_p(n) = T(n, p) = (1/n)*Sum_{d|gcd(n,p)} phi(d)*C(n/d, p/d), from which we get another proof of the formulae for a_p(n).
(End)
Links
- C. G. Bower, Transforms (2)
- David Broadhurst and Xavier Roulleau, Number of partitions of modular integers, arXiv:2502.19523 [math.NT], 2025. See p. 19.
- Mónica A. Reyes, Cristina Dalfó, Miguel Àngel Fiol, and Arnau Messegué, A general method to find the spectrum and eigenspaces of the k-token of a cycle, and 2-token through continuous fractions, arXiv:2403.20148 [math.CO], 2024. See pp. 5-6.
- Frank Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- Frank Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- Index entries for sequences related to necklaces
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1,1,-6,15,-20,15,-6,1).
Programs
-
Mathematica
k = 7; Table[Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n, {n, k, 30}] (* Robert A. Russell, Sep 27 2004 *) DeleteCases[CoefficientList[Series[x^7 (x^6 - 5 x^5 + 13 x^4 - 17 x^3 + 13 x^2 - 5 x + 1)/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1) (1 - x)^7), {x, 0, 41}], x], 0] (* Michael De Vlieger, Oct 10 2016 *)
Formula
Empirically this is ceiling(C(n, 7)/n). - N. J. A. Sloane
G.f.: x^7*(x^6 - 5*x^5 + 13*x^4 - 17*x^3 + 13*x^2 - 5*x + 1)/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(1 - x)^7). - Gael Linder (linder.gael(AT)wanadoo.fr), Jan 13 2005
G.f.: (6/(1 - x^7) + 1/(1 - x)^7)*x^7/7; in general, for a necklace with p black beads and p prime, the g.f. is ((p-1)/(1 - x^p) + 1/(1 - x)^p)*x^p/p. - Herbert Kociemba, Oct 15 2016
a(n) = ceiling(binomial(n, 7)/n) (conjecture by Wolfdieter Lang).
a(n) = (6/7)*I(7|n) + (1/7)*C(n-1,6) = (6/7)*I(7|n) + (1/n)*C(n,7), where I(condition) = 1 if the condition holds, and = 0 otherwise. - Petros Hadjicostas, Dec 08 2017
A053643 a(n) = ceiling(binomial(n,6)/n).
0, 0, 0, 0, 0, 1, 1, 4, 10, 21, 42, 77, 132, 215, 334, 501, 728, 1032, 1428, 1938, 2584, 3392, 4389, 5609, 7084, 8855, 10964, 13455, 16380, 19793, 23751, 28319, 33563, 39556, 46376, 54106, 62832, 72650, 83657, 95960, 109668, 124900
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- R. L. Graham and N. J. A. Sloane, Lower bounds for constant weight codes, IEEE Trans. Inform. Theory, 26 (1980), 37-43.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1,0,0,0,0,0,0,0,0,0,0,0,0,1,-5,10,-10,5,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,5,-10,10,-5,1,0,0,0,0,0,0,0,0,0,0,0,0,1,-5,10,-10,5,-1).
Programs
-
Magma
[Ceiling(Binomial(n,6)/n) : n in [1..50]]; // Wesley Ivan Hurt, Nov 01 2015
-
Maple
seq(ceil(binomial(n,5)/6), n=0..50); # Zerinvary Lajos, Jan 12 2009
-
Mathematica
Table[Ceiling[Binomial[n, 6]/n], {n, 50}] (* Michael De Vlieger, Nov 01 2015 *)
-
PARI
vector(50, n, ceil(binomial(n, 6)/n)) \\ Altug Alkan, Nov 01 2015
-
Sage
[ceil(binomial(n,6)/n) for n in (1..50)] # G. C. Greubel, May 17 2019
Formula
From Robert Israel, Nov 01 2015: (Start)
a(n) = ceiling(A000389(n-1)/6).
G.f.: (x^52 -2*x^51 +4*x^50 -4*x^49 +2*x^48 +x^47 -x^46 +2*x^44 -2*x^43 +x^42 -x^41 +4*x^40 -5*x^39 +4*x^38 -2*x^37 +3*x^36 -5*x^35 +5*x^34 -2*x^33 -2*x^32 +5*x^31 -5*x^30 +2*x^29 +2*x^28 -5*x^27 +5*x^26 -2*x^25 -2*x^24 +5*x^23 -5*x^22 +2*x^21 +2*x^20 -5*x^19 +5*x^18 -3*x^17 +4*x^16 -7*x^15 +9*x^14 -7*x^13 +5*x^12 -4*x^11 +4*x^10 -2*x^9 +3*x^7 -4*x^6 +x^5 +6*x^4 -10*x^3 +9*x^2 -4*x +1)*x^6/((x -1)^6*(x +1)*(x^4 +1)*(x^2 +x +1)*(x^2 -x +1)*(x^6 +x^3 +1)*(x^6 -x^3 +1)*(x^8 -x^4 +1)*(x^24 -x^12 +1)).
(End)
A053731 a(n) = ceiling(binomial(n,8)/n).
0, 0, 0, 0, 0, 0, 0, 1, 1, 5, 15, 42, 99, 215, 429, 805, 1430, 2431, 3978, 6299, 9690, 14535, 21318, 30645, 43263, 60088, 82225, 111004, 148005, 195098, 254475, 328697, 420732, 534006, 672452, 840565, 1043460, 1286934, 1577532, 1922618
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- R. L. Graham and N. J. A. Sloane, Lower bounds for constant weight codes, IEEE Trans. Inform. Theory, 26 (1980), 37-43.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-7,21,-35,35,-21,7,-1).
Crossrefs
Programs
-
Magma
[Ceiling(Binomial(n,8)/n): n in [1..45]]; // G. C. Greubel, Sep 06 2019
-
Maple
seq(ceil(binomial(n,8)/n), n=1..45); # G. C. Greubel, Sep 06 2019
-
Mathematica
Table[Ceiling[Binomial[n, 8]/n], {n, 45}] (* G. C. Greubel, Sep 06 2019 *)
-
PARI
vector(45, n, ceil(binomial(n,8)/n)) \\ G. C. Greubel, Sep 06 2019
-
Sage
[ceil(binomial(n,8)/n) for n in (1..45)] # G. C. Greubel, Sep 06 2019
A053733 a(n) = ceiling(binomial(n,9)/n).
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 5, 19, 55, 143, 334, 715, 1430, 2702, 4862, 8398, 13997, 22610, 35530, 54480, 81719, 120175, 173587, 246675, 345345, 476905, 650325, 876525, 1168700, 1542684, 2017356, 2615092, 3362260, 4289780, 5433722
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- R. L. Graham and N. J. A. Sloane, Lower bounds for constant weight codes, IEEE Trans. Inform. Theory, 26 (1980), 37-43.
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-8,28,-56,70,-56,28,-8,1).
Crossrefs
Programs
-
Magma
[Ceiling(Binomial(n,9)/n): n in [1..40]]; // G. C. Greubel, Sep 06 2019
-
Maple
seq(ceil(binomial(n,9)/n), n=1..40); # G. C. Greubel, Sep 06 2019
-
Mathematica
Table[Ceiling[Binomial[n, 9]/n], {n, 40}] (* G. C. Greubel, Sep 06 2019 *)
-
PARI
vector(40, n, ceil(binomial(n,9)/n)) \\ G. C. Greubel, Sep 06 2019
-
Sage
[ceil(binomial(n,9)/n) for n in (1..40)] # G. C. Greubel, Sep 06 2019
Comments
Examples
References
Links
Crossrefs
Programs
Haskell
Maple
Mathematica
PARI
Formula