A053624 Highly composite odd numbers: odd numbers where d(n) increases to a record.
1, 3, 9, 15, 45, 105, 225, 315, 945, 1575, 2835, 3465, 10395, 17325, 31185, 45045, 121275, 135135, 225225, 405405, 675675, 1576575, 2027025, 2297295, 3828825, 6891885, 11486475, 26801775, 34459425, 43648605, 72747675, 130945815
Offset: 1
Examples
9 is in the sequence because 9 has 3 divisors {1, 3, 9}, which is more than any previous odd number.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..363 (terms 1..170 from Ray Chandler)
- David Ryan, Mathematical Harmony Analysis, arXiv preprint arXiv:1603.08904 [cs.SD], 2016.
Crossrefs
Programs
-
Mathematica
nn = 10^6; maxd = 0; Reap[For[n = 1, n <= nn, n += 2, If[(nd = DivisorSigma[0, n]) > maxd, Print[n]; Sow[n]; maxd = nd]]][[2, 1]] (* Jean-François Alcover, Sep 20 2018, from PARI *) next[n_] := Module[{k=n, r=DivisorSigma[0, n]}, While[DivisorSigma[0, k]<=r, k+=2]; k] a053624[n_] := NestList[next, 1, n-1]/; n>=1 (* returns n numbers *) a053624[31] (* Hartmut F. W. Hoft, Mar 29 2022 *) DeleteDuplicates[Table[{n,DivisorSigma[0,n]},{n,1,131*10^6,2}],GreaterEqual[ #1[[2]],#2[[2]]]&][[;;,1]] (* Harvey P. Dale, Jul 05 2023 *)
-
PARI
lista(nn) = {maxd = 0; forstep (n=1, nn, 2, if ((nd = numdiv(n)) > maxd, print1(n, ", "); maxd = nd;););} \\ Michel Marcus, Apr 21 2014
Comments