A053631 Pythagorean spiral: a(n-1)+1, a(n) and a(n)+1 are the sides of a right triangle (a primitive Pythagorean triangle).
2, 4, 12, 84, 3612, 6526884, 21300113901612, 226847426110843688722000884, 25729877366557343481074291996721923093306518970391612, 331013294649039928396936390888878360035026305412754995683702777533071737279144813617823976263475290370884
Offset: 1
Keywords
Examples
For n=3, a(n-1) = 4, so we want a right triangle with sides 4 + 1 = 5, a(n), and a(n)+1. Solving (x+1)^2 = x^2 + 5^2 gives x = 12, so a(3) = 12. - _Michael B. Porter_, Jul 19 2016
Links
- Robert Israel, Table of n, a(n) for n = 1..13
Programs
-
Maple
a[1]:= 2: for n from 2 to 10 do a[n]:= a[n-1] + a[n-1]^2/2 od: seq(a[i],i=1..10); # Robert Israel, Jul 08 2015
-
Mathematica
NestList[# + #^2/2 &, 2, 9] (* Robert G. Wilson v, Dec 12 2012 *)
-
Maxima
a[1]:2$ a[n]:=a[n-1] + (a[n-1]^2)/2$ A053631(n):=a[n]$ makelist(A053631(n),n,1,10); /* Martin Ettl, Nov 08 2012 */
-
PARI
main(size)={v=vector(size); v[1]=2;for(n=2,size,v[n]=v[n-1]+v[n-1]^2/2);return(v)} /* Anders Hellström, Jul 08 2015 */
Formula
a(1)=2; for n >= 2: a(n) = a(n-1) + a(n-1)^2/2 = A046092(a(n-1)/2).
a(n) = A053630(n) - 1. - Robert G. Wilson v, Jul 29 2014
a(n) = 2*A007018(n-1). - Ivan Neretin, Jul 26 2015
Extensions
Corrected and extended by James Sellers, Mar 22 2000
a(1) = 2 added by Zak Seidov, Apr 10 2007
Comments