cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053636 a(n) = Sum_{odd d|n} phi(d)*2^(n/d).

Original entry on oeis.org

0, 2, 4, 12, 16, 40, 72, 140, 256, 540, 1040, 2068, 4128, 8216, 16408, 32880, 65536, 131104, 262296, 524324, 1048640, 2097480, 4194344, 8388652, 16777728, 33554600, 67108912, 134218836, 268435552, 536870968, 1073744160, 2147483708
Offset: 0

Views

Author

N. J. A. Sloane, Mar 23 2000

Keywords

Examples

			2*x + 4*x^2 + 12*x^3 + 16*x^4 + 40*x^5 + 72*x^6 + 140*x^7 + 256*x^8 + 540*x^9 + ...
		

Crossrefs

Programs

  • Haskell
    a053636 0 = 0
    a053636 n = sum $ zipWith (*) (map a000010 ods) (map ((2 ^) . (div n)) ods)
                where ods = a182469_row n
    -- Reinhard Zumkeller, Sep 13 2013
    
  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ Mod[ d, 2] EulerPhi[ d] 2^(n / d), {d, Divisors[ n]}]] (* Michael Somos, May 09 2013 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, (d % 2) * eulerphi(d) * 2^(n / d)))} /* Michael Somos, May 09 2013 */
    
  • Python
    from sympy import totient, divisors
    def A053636(n): return (sum(totient(d)<>(~n&n-1).bit_length(),generator=True))<<1) # Chai Wah Wu, Feb 21 2023

Formula

a(n) = n * A063776(n).
a(n) = Sum_{k=1..A001227(n)} A000010(A182469(n,k)) * 2^(n/A182469(n, A001227(n)+1-k)). - Reinhard Zumkeller, Sep 13 2013
G.f.: Sum_{m >= 0} phi(2*m + 1)*2*x^(2*m + 1)/(1 - 2*x^(2*m + 1)). - Petros Hadjicostas, Jul 20 2019