A053656 Number of cyclic graphs with oriented edges on n nodes (up to symmetry of dihedral group).
1, 2, 2, 4, 4, 9, 10, 22, 30, 62, 94, 192, 316, 623, 1096, 2122, 3856, 7429, 13798, 26500, 49940, 95885, 182362, 350650, 671092, 1292762, 2485534, 4797886, 9256396, 17904476, 34636834, 67126282, 130150588, 252679832, 490853416
Offset: 1
Examples
2 at n=3 because there are two such cycles. On (o -> o -> o ->) and (o -> o <- o ->).
References
- Jeb F. Willenbring, A stability result for a Hilbert series of O_n(C) invariants.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..3334
- Rémi Cocou Avohou, Joseph Ben Geloun, and Reiko Toriumi, Counting U(N)^{⊗r} ⊗ O(N)^{⊗q} invariants and tensor model observables, Eur. Phys. J. C 84, 839 (2024), see pp. 11, 27; Preprint arXiv:2404.16404 [hep-th], 2024. See pp. 18, 49.
- Paolo Boldi and Sebastiano Vigna, Fibrations of Graphs, Discrete Math., 243 (2002), 21-66.
- Shinsaku Fujita, alpha-beta Itemized Enumeration of Inositol Derivatives and m-Gonal Homologs by Extending Fujita's Proligand Method, Bull. Chem. Soc. Jpn. 2017, 90, 343-366. See Table 8.
- T. Pisanski, D. Schattschneider, and B. Servatius, Applying Burnside's lemma to a one-dimensional Escher problem, Math. Mag., 79 (2006), 167-180.
- Jeb F. Willenbring, Home page.
- A. Yajima, How to calculate the number of stereoisomers of inositol-homologs, Bull. Chem. Soc. Jpn. 2014, 87, 1260-1264. See Tables 1 and 2 (and text).
- Index entries for sequences related to bracelets.
Crossrefs
Programs
-
Maple
v:=proc(n) local k, t1; t1:=0; for k in divisors(n) do t1 := t1+phi(k)*2^(n/k); od: t1; end; h:=n-> if n mod 2 = 0 then (n/2)*2^(n/2); else 0; fi; A053656:=n->(v(n)+h(n))/(2*n); # N. J. A. Sloane, Nov 11 2006
-
Mathematica
a[n_] := Total[ EulerPhi[#]*2^(n/#)& /@ Divisors[n]]/(2n) + 2^(n/2-2)(1-Mod[n, 2]); Table[a[n], {n, 1, 35}] (* Jean-François Alcover, Nov 21 2011 *)
-
PARI
a(n)={(sumdiv(n, d, eulerphi(d)*2^(n/d))/n + if(n%2==0, 2^(n/2-1)))/2} \\ Andrew Howroyd, Jun 16 2021
Formula
G.f.: x/(1-x) + x^2/(2*(1-2*x^2)) + Sum_{n >= 1} (x^(2*n)/(2*n)) * Sum_{ d divides n } phi(d)/(1-x^d)^(2*n/d), or x^2/(2*(1-2*x^2)) - Sum_{n >= 1} phi(n)*log(1-2*x^n)/(2*n). [corrected and extended by Andrey Zabolotskiy, Oct 17 2017]
a(n) = A000031(n)/2 + (if n even) 2^(n/2-2).
Extensions
More terms and additional comments from Christian G. Bower, Dec 13 2001
Comments